vi. Structure, function and metabolisms of nucleic acids, DNA and RNA

Introduction to Nucleic Acids

1. Definition and Importance

- **Nucleic acids** (DNA and RNA) are polymers of nucleotides, serving as the repositories of genetic information (DNA) and mediators of gene expression (RNA).
- Underpin virtually all aspects of cell function—inheritance, protein synthesis, gene regulation.

2. Nucleotide Composition

- Each nucleotide consists of a nitrogenous base (purine or pyrimidine), a five-carbon sugar (ribose or deoxyribose), and one or more phosphate groups.
- o **Purines**: Adenine (A), Guanine (G).
- **Pyrimidines**: Cytosine (C), Thymine (T; in DNA), Uracil (U; in RNA).

3. Types of Nucleic Acids

- o Deoxyribonucleic Acid (DNA): Typically double-stranded, long-term information storage.
- **Ribonucleic Acid (RNA)**: Usually single-stranded, diverse roles in protein synthesis (mRNA, rRNA, tRNA) and regulation (miRNA, lncRNA, etc.).

DNA: Structure and Function

1. Double Helix Model

- Watson-Crick Structure (B-form DNA): Two antiparallel polynucleotide strands twisted into a right-handed helix.
- Bases pair via hydrogen bonds (A-T with 2 H-bonds, G-C with 3 H-bonds).
- Major and Minor Grooves: Binding sites for proteins (transcription factors, enzymes).

2. Forms of DNA

- **B-DNA**: Most common physiological form.
- A-DNA: More compact, right-handed, often in dehydrated samples or RNA-DNA hybrids.
- o Z-DNA: Left-handed helix, occurs in certain GC-rich regions; implicated in regulatory roles.

3. **DNA Packagin**g

- Prokaryotes: Single circular chromosome supercoiled by DNA gyrase, packaged in the nucleoid.
- **Eukaryotes**: Multiple linear chromosomes wound around histones, forming **nucleosomes**; further coiling yields higher-order chromatin structures.

4. DNA Functions

- **Genetic Information Storage**: Encodes genes, regulatory sequences.
- Transmission and Replication: Ensures faithful inheritance.
- **Long-Term Stability**: Double-stranded structure and repair mechanisms protect genetic content over generations.

DNA Metabolism

DNA Replication

$1. \ \, \textbf{Semi-Conservative Mechanism}$

- Each daughter molecule contains one parental strand and one newly synthesized strand (Meselson–Stahl experiment).
- **Bidirectional** from **origins of replication**; **forks** proceed in opposite directions.

2. Key Enzymes and Proteins

- Helicase: Unwinds the double helix.
- $\circ\,$ Single-Strand Binding Proteins (SSBs): Stabilize unwound template strands.
- ∘ **DNA Polymerase**: Catalyzes nucleotide addition in the 5'→3' direction. Different polymerases in prokaryotes (Pol I, III) vs. eukaryotes (Pol α , δ , ϵ).
- o **Primase**: Synthesizes short RNA primers.
- **Ligase**: Joins Okazaki fragments on the lagging strand.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

- 3. Leading vs. Lagging Strands
 - Leading Strand: Synthesized continuously.
 - Lagging Strand: Discontinuous synthesis forms Okazaki fragments, later joined by DNA ligase.

4. High Fidelity and Proofreading

- DNA polymerases often have 3'→5' exonuclease activity to correct misincorporated nucleotides.
- The **Mismatch Repair** system further enhances accuracy.

DNA Repair

1. Types of Damage

 Spontaneous (depurination, deamination), UV-induced (thymine dimers), chemical mutagens, ionizing radiation (strand breaks).

2. Major Repair Pathways

- Base Excision Repair (BER): Removes damaged bases (e.g., uracil in DNA) via DNA glycosylases, followed by endonuclease and polymerase fill-in.
- Nucleotide Excision Repair (NER): Fixes bulky lesions (thymine dimers).
- **Mismatch Repair (MMR)**: Corrects replication errors (mismatched bases).
- o Double-Strand Break Repair: Non-homologous end joining (NHEJ) or homologous recombination (HR).

RNA: Structure and Types

1. RNA Structure

- Generally single-stranded with **ribose** sugar (2′-OH) and **uracil** instead of thymine.
- Can form secondary structures (hairpins, stem-loops) and tertiary structures (tRNA cloverleaf, ribozymes).

2. Classes of RNA

3. Messenger RNA (mRNA)

- Encodes protein sequences. In eukaryotes, typically **monocistronic**; in prokaryotes, often **polycistronic**.
- Eukaryotic mRNAs have a 5' cap and 3' poly(A) tail.

4. Ribosomal RNA (rRNA)

- $\circ~$ Major structural and catalytic component of $\boldsymbol{ribosomes}.$
- o In eukaryotes, 28S, 18S, 5.8S, 5S rRNAs. In prokaryotes, 23S, 16S, 5S rRNAs.

5. Transfer RNA (tRNA)

- Adaptor molecules, each carrying a specific amino acid to the ribosome.
- o Anticodon loop pairs with mRNA codon, ensuring correct amino acid incorporation.

6. Non-Coding Regulatory RNAs

- MicroRNAs (miRNAs), small interfering RNAs (siRNAs): Gene silencing via mRNA cleavage or translational repression.
- Long noncoding RNAs (IncRNAs): Chromatin remodeling, transcriptional regulation.
- snRNA, snoRNA: Involved in splicing (snRNPs) and rRNA modification (snoRNPs).

RNA Metabolism

Transcription

1. Prokaryotic Transcription

- $\circ~$ Single RNA polymerase (σ factor confers promoter specificity).
- o **Promoters**: -35 and -10 (Pribnow box) regions.
- $\circ \ \ \textbf{Termination} \colon \mathsf{Rho}\text{-}\mathsf{dependent} \ \mathsf{or} \ \mathsf{Rho}\text{-}\mathsf{independent} \ (\mathsf{hairpin} \ \mathsf{loop} + \mathsf{U}\text{-}\mathsf{tract}).$

2. Eukaryotic Transcription

- Three RNA Polymerases:
 - Pol I: rRNA.
 - Pol II: mRNA, some snRNA.
 - Pol III: tRNA, 5S rRNA, small RNAs.
- $\circ\,$ Promoters and Enhancers: TATA box, GC box, etc.
- **General Transcription Factors (TFIIX)** assemble into a preinitiation complex.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

• **Termination**: Pol II transcripts cleaved past poly(A) signal; coupled with polyadenylation.

Post-Transcriptional Modifications

1. 5' Capping

- Addition of 7-methylguanosine cap to 5' end of nascent mRNA.
- Protects mRNA from degradation, aids ribosome binding.

2. 3' Polyadenylation

- ∘ Poly(A) polymerase adds ~50-250 adenines to 3′ end.
- o Stabilizes mRNA, facilitates nuclear export.

3. Splicing

- Removes introns, ligates, exons. Mediated by the spliceosome (snRNPs U1, U2, U4, U5, U6).
- Alternative Splicing: Creates multiple protein isoforms from a single gene.

RNA Degradation and Turnover

- **Exoribonucleases** degrade RNA from $5' \rightarrow 3'$ or $3' \rightarrow 5'$ directions.
- RNA interference pathways (RISC, Dicer) can target specific mRNAs for degradation.

Nucleotide Biosynthesis and Degradation

Purine and Pyrimidine Synthesis

1. De Novo Pathways

- Purine Synthesis: Built on a ribose phosphate scaffold (PRPP → IMP → AMP/GMP). Key regulatory enzyme is glutamine-PRPP amidotransferase.
- Pyrimidine Synthesis: Carbamoyl phosphate + aspartate → orotate → UMP → UTP → CTP. The first enzyme is carbamoyl phosphate synthetase II (cytosolic).

2. Salvage Pathways

- Recycling free bases (hypoxanthine, guanine, adenine) via HGPRT or adenine phosphoribosyltransferase.
- Lesch-Nyhan syndrome (HGPRT deficiency) exemplifies salvage pathway failure.

Nucleotide Degradation

1. Purine Degradation

Ultimately forms uric acid. Excess → gout (hyperuricemia, crystal deposition in joints).

2. Pyrimidine Degradation

• Broken down to simpler molecules (β-alanine, β-aminoisobutyrate), less clinically problematic.

3. Regulation

 $\circ\,$ Feedback inhibition of key enzymes ensures balanced purine/pyrimidine pools.

Overall Biological Significance

1. Genetic Information Flow

- ∘ **Central Dogma**: DNA → RNA → Protein. Nucleic acids coordinate heredity and phenotype expression.
- **Transcriptional and Post-Transcriptional Regulation**: Vital for cell differentiation, adaptation, disease states (e.g., cancer).

2. Clinical Applications

- o Nucleic Acid Therapies: Antisense oligonucleotides, RNAi-based drugs, mRNA vaccines.
- **Diagnostic Tools**: PCR, qRT-PCR, sequencing, microarrays.
- **Inherited Disorders**: E.g., **Splice site mutations** causing β-thalassemia, or defects in DNA repair leading to cancer predisposition.

3. Pharmacological Targets

- o Many antibiotics (e.g., rifampin, fluoroquinolones) target bacterial DNA/RNA metabolism.
- Anticancer drugs (e.g., 5-FU, methotrexate) inhibit nucleotide biosynthesis.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

Concluding Remarks

Nucleic acids—DNA as the stable genetic blueprint and RNA in its myriad functional forms—are central to life's molecular processes. Their **structures** (helixes, base pairing, secondary/tertiary folds) govern how genetic information is stored, replicated, transcribed, and translated. The cell's **metabolic** pathways for nucleotides (de novo and salvage synthesis, catabolism) enable dynamic regulation of nucleotide pools, ensuring fidelity and adaptability under changing conditions.

The sophisticated regulation of **DNA replication**, **repair**, **transcription**, and **RNA processing** reflects evolution's solutions to preserve genomic integrity while facilitating complexity in gene expression. Understanding these core biochemistry and molecular biology concepts is paramount for fields as diverse as **genetics**, **medicine**, **pharmacology**, **and biotechnology**, all harnessing nucleic acids for diagnostics, therapeutics, and the quest to unravel life's molecular foundations.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.