v. Heme synthesis and disorders

Overview of Heme Structure and Functions

1. Molecular Architecture of Heme

- Heme consists of a protoporphyrin IX macrocycle (four pyrrole rings) coordinated to a central ferrous iron (Fe²⁺).
- The conjugated ring system gives the heme its characteristic deep red color and ability to reversibly bind gases (O₂, CO, NO).

2. Biological Roles

- Hemoglobin and Myoglobin: Essential for oxygen transport and storage.
- Cytochromes (e.g., cytochrome c, P450 enzymes): Electron transport, oxidative metabolism, and detoxification.
- Catalase and Peroxidases: Heme-based enzymes that decompose hydrogen peroxide, essential for cellular antioxidant defense.

Heme Synthesis: Steps and Regulation

Sites of Synthesis

- Bone Marrow (Erythroid Cells): ~85% of total daily heme production for hemoglobin.
- **Liver**: ~10-15% for cytochrome P450 enzymes and other heme proteins.
- **Cellular Localization**: Some steps in the **mitochondrion**, others in the **cytosol**; the final step completes in mitochondria.

Key Steps in the Heme Biosynthetic Pathway

- 1. Formation of δ-Aminolevulinic Acid (δ-ALA)
 - Rate-Limiting Step: ALA synthase (ALAS) catalyzes the condensation of glycine and succinyl-CoA to form δ-ALA.
 - Occurs in the **mitochondrial matrix**.
 - Two isoforms: **ALAS1** (housekeeping, mainly in liver) and **ALAS2** (erythroid-specific).

2. Cytosolic Steps

- ALA dehydratase (also called porphobilinogen synthase) condenses two δ-ALA to form porphobilinogen (PBG).
- Porphobilinogen deaminase links four PBG units → linear hydroxymethylbilane.
- Uroporphyrinogen III synthase folds and cyclizes the linear tetrapyrrole → uroporphyrinogen III.
- Uroporphyrinogen decarboxylase sequentially removes carboxyl groups, converting uroporphyrinogen
 → coproporphyrinogen III.
- 3. Return to Mitochondria
 - Coproporphyrinogen oxidase transforms coproporphyrinogen III → protoporphyrinogen IX.
 - Protoporphyrinogen oxidase oxidizes it to protoporphyrin IX.
 - Ferrochelatase inserts Fe²⁺ into protoporphyrin IX → heme (final step).

Regulation of Heme Synthesis

- 1. **Rate-Limiting Enzyme**: **ALA synthase** activity is tightly regulated by **heme** feedback (represses ALAS1 gene transcription in hepatocytes, modulates enzyme stability, etc.).
- 2. **Erythroid-Specific Control**: **ALAS2** regulated by iron availability (via iron-responsive elements) and erythroid differentiation signals (e.g., erythropoietin).
- 3. **Drug and Hormonal Influences**: Certain drugs (barbiturates, some steroids) induce cytochrome P450 → increased hepatic ALAS1 expression. This can precipitate porphyric attacks in susceptible individuals.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

Disorders of Heme Synthesis: Porphyrias and Related Conditions

Porphyrias: An Overview

- Definition: Rare, mostly inherited disorders caused by defects in enzymes of the heme biosynthetic pathway.
- Accumulation of Precursors: Specific enzyme blocks lead to buildup of distinct intermediates, with associated clinical manifestations (neurovisceral or photosensitivity).

Major Porphyrias

1. Acute Intermittent Porphyria (AIP)

- Enzyme: Deficiency in porphobilinogen deaminase (also called hydroxymethylbilane synthase).
- Accumulates: ALA and PBG (δ-ALA, porphobilinogen).
- Clinical: Neurovisceral attacks (abdominal pain, neuropathy, psychiatric symptoms), typically no cutaneous manifestations.
- **Precipitated** by drugs inducing cytochrome P450, fasting, stress.

2. Porphyria Cutanea Tarda (PCT)

- Enzyme: Deficiency in uroporphyrinogen decarboxylase.
- Accumulates: Uroporphyrinogen (leading to photosensitive porphyrins in the skin).
- o Clinical: Photosensitivity, blistering on sun-exposed areas, hyperpigmentation, hypertrichosis.
- o Often acquired: Associated with liver disease (alcohol, hepatitis C), hemochromatosis.

3. Hereditary Coproporphyria (HCP) and Variegate Porphyria (VP)

- Defects in coproporphyrinogen oxidase (HCP) or protoporphyrinogen oxidase (VP).
- Mixed features (neurovisceral attacks + cutaneous photosensitivity) due to accumulation of porphyrin precursors.

4. Erythropoietic Protoporphyria (EPP)

- o Enzyme: Ferrochelatase deficiency or reduced activity.
- Accumulates: Protoporphyrin IX in erythrocytes, causing photosensitivity (painful but minimal blistering).

Lead Poisoning (Plumbism)

- Mechanism: Lead inhibits ALA dehydratase and ferrochelatase, causing buildup of δ-ALA and protoporphyrin.
- **Clinical**: Anemia (due to impaired heme synthesis), basophilic stippling of RBCs, neurologic and GI symptoms in chronic exposure.
- **Diagnosis**: Elevated blood lead levels, increased zinc protoporphyrin.

Additional Heme-Related Issues

- **Sideroblastic Anemias**: Impaired incorporation of iron into protoporphyrin (e.g., genetic or acquired ALAS dysfunction) leading to ring sideroblasts in the marrow.
- **Drug-Induced Porphyrias**: Inducers of CYP450 can exacerbate or unmask acute porphyrias in susceptible individuals.

Metabolism and Fate of Heme

1. Heme Degradation

- **Heme Oxygenase** cleaves heme ring to **biliverdin**, releasing CO and Fe²⁺.
- o **Biliverdin reductase** reduces biliverdin to **bilirubin** (unconjugated, water-insoluble).
- \circ In the liver, bilirubin is **conjugated** with glucuronic acid (UDP-glucuronyl transferase) \rightarrow excreted in bile.

2. Clinical Correlates

• **Hyperbilirubinemia**: e.g., jaundice from hemolysis, reduced conjugation (Gilbert's syndrome, Crigler-Najjar), or biliary obstruction.

Concluding Remarks

Heme synthesis integrates multiple mitochondrial and cytosolic enzymes, ensuring a steady supply of heme for

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

oxygen transport (hemoglobin/myoglobin), **electron transfer** (cytochromes), and **redox reactions** (catalases, peroxidases). Dysregulation or enzymatic blockages—genetic (porphyrias) or acquired (lead poisoning)—lead to **toxic precursor accumulations** with distinctive clinical pictures (acute neurovisceral attacks, photosensitivity, liver dysfunction).

From a clinical standpoint, recognizing **porphyrias** and **lead poisoning** is critical, given their often protean presentations and potential triggers (certain medications, fasting, alcohol). Advances in **molecular diagnostics** have refined classification and management strategies (e.g., hemin infusions, phlebotomy in PCT, iron chelation), highlighting the interplay between basic biochemistry and translational medicine in addressing heme-related disorders.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.