iv. Natural and Acquired immunity, cell-mediated immunity and toxicity and cytokines

Immunity refers to the body's protective strategies against infections or abnormal cells. It is broadly segmented into **natural (innate)** vs. **acquired (adaptive)** immunity, with **cell-mediated** mechanisms playing a crucial role in eliminating intracellular pathogens and malignant cells. **Cytokines**, as signaling molecules, orchestrate immune cell communication and direct inflammatory responses. Below is a comprehensive discussion on each aspect, connecting modern immunological details with occasional Ayurvedic correlates where relevant.

Natural (Innate) vs. Acquired (Adaptive) Immunity

Natural or Innate Immunity

1. **Definition**

- The **first-line**, **non-specific** defense present at birth, unaffected by prior exposure to pathogens.
- Components: physical barriers (skin, mucous membranes), physiological (acidic pH in stomach),
 cellular (neutrophils, macrophages, NK cells), soluble factors (complement, acute-phase proteins).

2. Key Features

- **Immediate response**: Reacts within minutes/hours, recognizes **PAMPs** (Pathogen-Associated Molecular Patterns) using **PRRs** (Pattern Recognition Receptors).
- No memory: Repeated infections with the same microbe do not significantly enhance innate reaction.
- Limited specificity: Innate cells and molecules target broad microbial signatures.

3. Ayurvedic Corollary

- Concept of vyādhikṣamatva (natural resistance) including external defenses (skin, secretions) and doṣabalancing approach.
- o Examples: Consistent daily routine (dinacharyā) to keep kapha in check, ensuring robust natural defense.

Acquired or Adaptive Immunity

1. Definition

- o Antigen-specific immunity developed after exposure to pathogens or via immunization.
- o Divided into humoral (B-cell/antibody-mediated) and cell-mediated (T-cell mediated) arms.

2. Key Features

- Specificity: Receptors (TCR, BCR) tailored to unique epitopes.
- **Memory**: Reinfections produce faster, more robust secondary responses.
- Diversity: Vast repertoire from somatic recombination (VD) or VJ gene rearrangements).

3. Sub-Types

- o Active immunity: Achieved by natural infection or vaccination (long-lasting).
- Passive immunity: Transfer of IgG across placenta, colostrum (breast milk), or administered immunoglobulins (short-lived, no memory).

Cell-Mediated Immunity (CMI)

Overview

1. Definition

• The adaptive immune response is primarily driven by **T lymphocytes** (CD4+, CD8+, other subsets), orchestrating the direct **destruction** of infected or altered cells and regulating other immune components.

2. Principal Effectors

- **CD8+ Cytotoxic T Cells (CTLs)**: Kill virally infected or tumor cells by releasing perforin/granzymes or inducing Fas-mediated apoptosis.
- **CD4+ T Helper Cells**: Secrete cytokines to activate macrophages (Th1 response), help B cells produce antibodies (Th2), or modulate responses (Treg, Th17).
- NK Cells: Innate-like lymphocytes bridging innate and adaptive immunity, attack cells with downregulated MHC I.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

Mechanisms and Relevance

1. Antigen Presentation

- T cells recognize peptides in MHC context (Class I for CD8+, Class II for CD4+).
- APCs (dendritic cells, macrophages) are essential for T-cell priming.

2. Elimination of Intracellular Pathogens

• Viruses replicating inside cytoplasm or bacteria like *Mycobacterium tuberculosis* within phagosomes require T-cell (CD4+ Th1) activation of macrophages or direct cytotoxic approach from CD8+ T cells.

3. Translational Impact

- Vaccines harness cell-mediated immunity for robust, long-term protection (e.g., BCG for TB, cellular immunity crucial).
- o Immunotherapies (CAR T-cells) exploit T-cell specificity against tumors.

Cytokines

Definition and Classification

1. Definition

• **Cytokines** are low-molecular-weight proteins/peptides produced by immune cells (and others) that mediate **communication**, **growth**, **differentiation**, and **effector** functions.

2. Major Families

- o Interleukins (IL): IL-1, IL-2, IL-6, etc., regulating leukocyte interactions.
- Interferons (IFN): IFN-α, IFN-β (type I), IFN-γ (type II) with antiviral, immunoregulatory roles.
- Tumor Necrosis Factors (TNFs): E.g., TNF-α involved in inflammation, cell death pathways.
- **Chemokines**: Direct leukocyte migration (e.g., IL-8, RANTES).
- Colony-Stimulating Factors (CSFs): Stimulate marrow production of granulocytes, macrophages, etc.

Functions and Signaling

1. Immune Regulation

- Orchestrate T/B cell proliferation (IL-2 for T cells), macrophage activation (IFN-γ), or neutrophil mobilization (G-CSF).
- \circ Anti-inflammatory (IL-10, TGF- β) vs. pro-inflammatory (TNF- α , IL-1 β).

2. Mechanisms

- Bind specific cytokine receptors, triggering JAK-STAT or other signaling cascades.
- High specificity, short half-lives, often function in local microenvironments (paracrine).

3. Clinical Applications

- Cytokine therapy (e.g., IFN-α for some cancers, IL-2 in immunotherapy).
- Cytokine inhibitors (anti-TNF for rheumatoid arthritis, IL-6 inhibitors) in autoimmune or inflammatory diseases.

Integrated Understanding and Clinical Implications

1. Immune Responses

- **Natural** (innate) immunity confers rapid, broad protection. **Acquired** (adaptive) immunity invests in specificity and memory.
- **Cell-mediated** T-cell functions are crucial against intracellular microbes and malignant cells, while **B cells** and antibodies address extracellular pathogens.

2. Cytokine Modulation

- Dysregulated cytokine production can cause hyperinflammatory states (cytokine storm) or immunodeficiency.
- Therapeutic manipulation of cytokines or their receptors is central to treating autoimmunity (e.g., RA, IBD) or boosting anticancer immunity.

3. Ayurvedic Correlations

• While not referencing "cytokines," Ayurveda acknowledges the concept of "agni" and balanced "ojas" for robust immune functioning.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

• Approaches to reduce "amavisha" (toxic buildup) or dosic aggravation might parallel controlling excessive inflammatory cytokines.

Future Prospects

1. Personalized Immunity

• Incorporating genetic screenings (HLA or TCR repertoire) plus doșa-based constitutional analysis might refine preventive or therapeutic strategies.

2. Cytokine-Based Therapies

• Emerging biologics (IL-17 inhibitors, IL-23 blockers) for psoriasis, advanced cytokine gene therapies, or targeted nanomedicine.

3. Holistic Integration

• Cross-disciplinary research bridging advanced immunology with Ayurveda's immunomodulatory approaches (herbal rasāyanas, stress management) for synergy in chronic inflammatory or autoimmune diseases.

Conclusion

Natural and acquired immunity constitute the pillars of host defense, with innate defenses providing immediate coverage and adaptive systems ensuring specific, long-term protection. Cell-mediated immunity (T-cell-driven) is indispensable for tackling intracellular pathogens and tumor cells, while cytokines serve as the communication hub across immune cells—fine-tuning responses to pathogens or self-antigens. Recognizing these fundamentals is key to immunodiagnostics, vaccine design, immunotherapies, and an integrative approach weaving modern immunology with classical prophylactic or rejuvenative principles.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.