

#### WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

## iii. Lipid chemistry and metabolism...

### iii. Lipid chemistry and metabolism, Disorders associated with lipid metabolism, Lipidomics

# **Lipid Chemistry**

### **Classification and Structure**

#### 1. Fatty Acids (FAs)

- **Definition**: Long-chain carboxylic acids, typically with an even number of carbons (4–24). May be saturated (no double bonds) or unsaturated (one or more double bonds).
- Nomenclature: Numbering from carboxyl (COOH) end (e.g., 16:0 palmitic acid, 18:1 oleic acid). Omega nomenclature counts from the methyl (CH<sub>3</sub>) end (e.g., ω-3, ω-6).

### 2. Triacylglycerols (TAGs) / Triglycerides

- **Definition**: Three FAs esterified to glycerol.
- Function: Main storage form of energy in adipose tissue.

### 3. Phospholipids

- **Glycerophospholipids**: Glycerol backbone, two FA tails, phosphate head (often with an additional polar group). Major constituents of biological membranes.
- o Sphingophospholipids (e.g., sphingomyelin): Sphingosine backbone, phosphocholine head group.

### 4. Glycolipids

• **Glycosphingolipids**: Sphingosine-based lipids with one or more sugar residues, crucial in cell membranes (e.g., cerebrosides, gangliosides).

#### 5. Sterols (Steroids)

- Cholesterol: Characteristic four-fused ring structure, modulates membrane fluidity, precursor to bile acids, steroid hormones, and vitamin D.
- **Steroid Hormones**: Cortisol, aldosterone, sex steroids (testosterone, estrogen, progesterone).

### 6. Other Lipids

- **Waxes**: Esters of long-chain FAs with long-chain alcohols.
- $\circ$  **Eicosanoids**: Signaling molecules (prostaglandins, thromboxanes, leukotrienes) derived from arachidonic acid (20:4  $\omega$ -6).

# **Lipid Metabolism**

## **Digestion and Absorption**

### 1. Dietary Lipids

- o Mostly TAGs, phospholipids, cholesterol, and fat-soluble vitamins.
- o **Emulsification** in the small intestine by bile salts (synthesized in the liver, stored in the gallbladder).
- Pancreatic Lipases hydrolyze TAGs to monoacylglycerol and free FAs.
- Mixed micelles deliver lipids to enterocytes → re-esterification into TAGs → packaging into chylomicrons for transport via the lymphatic system.

## 2. Lipoproteins

- Chylomicrons: Transport dietary TAGs and cholesterol from intestine to peripheral tissues.
- VLDL: Export TAGs synthesized in the liver to tissues, becomes IDL → LDL upon TAG removal.
- **LDL** (Low-Density Lipoprotein): Delivers cholesterol to peripheral cells. High LDL levels linked to atherosclerosis.
- HDL (High-Density Lipoprotein): Participates in reverse cholesterol transport from tissues back to the liver.

## **Fatty Acid Synthesis and Oxidation**

### 1. Fatty Acid Synthesis (Lipogenesis)

- **Location**: Cytosol of liver, adipose tissue.
- Key Enzyme: Acetyl-CoA Carboxylase (ACC) converts acetyl-CoA → malonyl-CoA. Fatty Acid Synthase
  extends the chain two carbons at a time.

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.



#### WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

Regulation: Stimulated by insulin, inhibited by glucagon/epinephrine. Excess carbohydrate intake drives FA synthesis → TAG storage.

#### 2. Beta-Oxidation

- **Location**: Mitochondrial matrix (long-chain FAs first activated to acyl-CoA, then transported via carnitine shuttle).
- Process: Seguential removal of two-carbon units as acetyl-CoA, generating NADH and FADH2.
- Regulation: Inhibited by malonyl-CoA (prevents simultaneous synthesis and degradation).

## 3. Ketone Body Metabolism

- Produced in the liver (mitochondria) from excess acetyl-CoA when carbohydrate availability is low (fasting, diabetes).
- **Ketone Bodies**: Acetoacetate, β-hydroxybutyrate, acetone. Provide alternative fuel for brain, muscle.
- Excess production → ketoacidosis (seen in uncontrolled Type 1 diabetes).

## **Cholesterol Synthesis and Transport**

#### 1. Biosynthesis

- Acetyl-CoA → HMG-CoA → Mevalonate via HMG-CoA Reductase (rate-limiting step).
- o Location: Cytosol and ER of hepatocytes.
- Highly regulated by intracellular cholesterol levels, hormones, statin drugs inhibit HMG-CoA reductase.

#### 2. Excretion

o Cholesterol converted to bile acids in the liver, aids fat digestion and excretion.

### 3. Regulation

- LDL Receptor-mediated endocytosis controls plasma LDL levels.
- SREBP (Sterol Regulatory Element-Binding Protein) transcription factor regulates expression of LDL receptors and enzymes for cholesterol synthesis.

# **Disorders Associated with Lipid Metabolism**

## Hyperlipidemias (Dyslipidemias)

### 1. Familial Hypercholesterolemia (Type IIa)

- Genetic defects in the LDL receptor or ApoB-100 → elevated LDL levels, early atherosclerosis, tendon xanthomas.
- o Treatments: Statins, PCSK9 inhibitors, LDL apheresis.

### 2. Hypertriglyceridemia

- Elevated VLDL or chylomicrons; associated with pancreatitis risk, metabolic syndrome.
- o Often managed with fibrates, omega-3 fatty acids, lifestyle changes.

### 3. Metabolic Syndrome

o Cluster of obesity, insulin resistance, hyperlipidemia, hypertension; increases risk of cardiovascular disease.

## **Fatty Liver Diseases**

## 1. Non-Alcoholic Fatty Liver Disease (NAFLD)

- Excess fat accumulation in hepatocytes linked to obesity, insulin resistance.
- o Can progress to **Non-Alcoholic Steatohepatitis (NASH)**, fibrosis, cirrhosis, hepatocellular carcinoma.

### 2. Alcoholic Liver Disease

High alcohol intake → impaired lipid metabolism in liver → steatosis, hepatitis, cirrhosis.

## **Lipid Storage Disorders (Sphingolipidoses)**

### 1. Gaucher Disease

 Glucocerebrosidase deficiency → accumulation of glucocerebrosides, causing hepatosplenomegaly, bone lesions.

## 2. Niemann-Pick Disease

Sphingomyelinase deficiency → sphingomyelin build-up. Neurological decline, organomegaly.

## 3. Tay-Sachs Disease

Hexosaminidase A deficiency → GM2 ganglioside accumulation in neurons, progressive

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

#### WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

neurodegeneration.

## **Obesity and Associated Dysregulation**

- Chronic positive energy balance → adipocyte hypertrophy/hyperplasia, chronic inflammation, insulin resistance.
- Vicious cycle of elevated FFA flux from adipose tissue impairing metabolic regulation.

## Lipidomics

## **Definition and Scope**

- **Lipidomics**: A branch of metabolomics focusing on the comprehensive characterization and quantification of lipids within cells, tissues, or organisms.
- Applies advanced mass spectrometry (MS) and chromatography techniques to identify lipid species, modifications, dynamics.

## **Biological and Clinical Relevance**

#### 1. Biomarker Discovery

 Specific lipid profiles can indicate early disease states (e.g., changes in phospholipids in neurodegenerative disorders).

#### 2. Mechanistic Insights

 Lipidomics reveals signaling lipids (e.g., eicosanoids, ceramides) and how metabolic pathways adapt under stress, diet, or pharmacological intervention.

#### 3. Precision Medicine

 Tailoring interventions based on individual lipidomic signatures, improving disease prediction, prevention, and treatment strategies.

## **Methodological Approaches**

- LC-MS (Liquid Chromatography-Mass Spectrometry), GC-MS (Gas Chromatography-MS), Shotgun Lipidomics (direct infusion MS).
- Bioinformatics for data processing, lipid identification (MS/MS spectra), and pathway analysis.

# **Concluding Remarks**

Lipids encompass a broad class of structurally diverse molecules fulfilling critical **energy storage** (TAGs), **membrane structure** (phospholipids, cholesterol), **signaling** (steroid hormones, eicosanoids), and **protective** (myelin sheaths, waxes) roles. Their **metabolism**—including absorption, transport via lipoproteins, beta-oxidation, and biosynthesis—is intricately regulated by **hormonal** and **nutritional** signals.

**Disorders of lipid metabolism** can manifest as **atherosclerosis**, **hyperlipidemias**, **fatty liver diseases**, **sphingolipidoses**, and **obesity-associated pathologies**, often with far-reaching consequences for cardiovascular, hepatic, and neurological health. Finally, **lipidomics** is revolutionizing our capacity to dissect the lipid milieu, shedding new light on disease mechanisms, identifying novel biomarkers, and guiding next-generation therapies and precision nutrition interventions.

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.