iii. Characterizations of nanoparticles, various microscopes...

iii. Characterizations of nanoparticles - transmission electron microscope (TEM), scanning electron microscope (SEM), fluroscence microscopy, atomic force microscope (AFM), Energy-dispersive X-ray spectroscopy (EDX), UV - visible absorption; photoluminescence; Fourier-transform infrared spectroscopy (FTIR), Atomic absorption spectroscopy (AAS) and dynamic light scattering spectroscopy (DLS)

Transmission Electron Microscope (TEM)

Principle and Instrumentation

1. Electron Beam Transmission

- In **TEM**, a high-energy electron beam (typically 80–300 keV) passes through an ultrathin specimen (<100 nm thickness).
- Interactions between the beam and the sample generate contrast (phase contrast, mass-thickness contrast), revealing internal structure at very high resolutions (<0.1 nm<0.1~\mathrm{nm}<0.1 nm under advanced instruments).

2. Key Components

- **Electron Gun**: Often tungsten filament or field emission gun (FEG).
- Electromagnetic Lenses: Condenser lenses focus the electron beam; objective lens forms the primary image.
- Projector Lenses and Screen/Detector: Magnify and record the final image on a fluorescent screen or CCD/CMOS camera.

3. Sample Preparation

- For powders (e.g., nanoparticles), typically dispersed in a solvent, then deposited on a **carbon-coated copper grid**.
- Biological or sensitive samples may require cryogenic preparation (cryo-TEM) to preserve native structures.

Capabilities for Nanoparticle Characterization

1. Size and Morphology

- o Visualize individual particles and measure diameters, aspect ratios with near-atomic resolution.
- o Identify shape variations (spheres, rods, cubes, star-shaped, etc.).

2. Lattice Resolved Imaging (HRTEM)

- High-Resolution TEM (HRTEM) reveals lattice fringes, crystallographic planes, defects, or grain boundaries.
- o Critical for analyzing crystalline materials (metals, metal oxides, semiconductors).

3. Electron Diffraction and SAED

 Selected Area Electron Diffraction (SAED) patterns provide crystallographic information, confirming phase and identifying polycrystalline or single-crystal domains.

4. Energy-Dispersive X-Ray Spectroscopy (EDS)

- Often integrated with TEM (STEM-EDS), enabling elemental composition mapping at the nanoscale.
- Useful to confirm doping levels, alloy compositions, or core-shell distributions.

Scanning Electron Microscope (SEM)

Principle and Instrumentation

1. Electron Beam Scanning

- SEM employs a focused electron beam (commonly 1-30 keV) that scans the sample's surface in a raster pattern.
- Secondary electrons (SE) and backscattered electrons (BSE) ejected from the surface create topographical and compositional contrast.

2. Key Components

o Electron Column: Includes electron gun, condenser lenses, objective lens to focus the beam onto the

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

sample surface.

Oetectors:

- **SE Detector**: Captures low-energy secondary electrons from top surface layers, revealing fine surface details.
- **BSE Detector**: More sensitive to atomic number contrast (Z-contrast).
- Vacuum Chamber: Minimizes electron scattering by air molecules.

3. Sample Preparation

- **Nonconductive samples** (e.g., polymeric nanoparticles, biological specimens) often require conductive coating (Au/Pd sputtering).
- For many inorganic nanoparticles (metals, metal oxides), minimal preparation is needed, though ensuring good adhesion to sample stubs is important.

Capabilities for Nanoparticle Characterization

1. Surface Topography and Morphology

- SEM excels at imaging surface features (aggregates, interparticle spacing).
- Typical resolution in high-end FE-SEM can approach ~1 nm (depending on instrument and sample).

2. Particle Size Distribution

 By examining multiple fields of view, one can estimate size distributions, though resolution is lower than TEM for very small (<5 nm) particles.

3. Elemental Analysis (EDS)

 As in TEM, SEM-EDS can map elemental composition across the sample's surface, distinguishing different nanoparticle types or confirming doping.

4. 3D-Like Imaging

• SEM images provide a pseudo-3D view of sample topography due to shadowing effects of secondary electron emission.

Fluorescence Microscopy

Principle and Techniques

1. Fluorophore Excitation and Emission

- Fluorescence microscopy uses light of a specific wavelength to excite fluorophores (intrinsic or extrinsic), which emit at longer wavelengths.
- Nanoparticles can be intrinsically fluorescent (e.g., quantum dots) or labeled with dyes, facilitating visualization under an optical microscope.

2. Instrumentation

- Epifluorescence, Confocal, or Super-Resolution microscopes commonly used.
- o Confocal systems employ a pinhole to eliminate out-of-focus light, yielding high-contrast optical sections.

3. Quantum Dots

 Semiconductor nanocrystals (e.g., CdSe/ZnS) have size-dependent emission, high brightness, and photostability, well-suited for biological imaging.

Advantages for Nanoparticle Characterization

1. Tracking and Localization in Biological Systems

- Fluorescently labeled nanoparticles enable real-time observation of cellular uptake, intracellular trafficking, and biodistribution.
- Multi-color labeling reveals co-localization with organelles or other biomolecules.

2. **Structural Insights** at Subcellular Scales

- Super-resolution methods (STORM, PALM) can push resolution below the diffraction limit (~20–50 nm), approaching the nanoscale domain.
- 3. **Limitation**: Optical diffraction limit typically ~200–300 nm for standard epifluorescence, insufficient for direct morphological analysis of single particles <20 nm (hence complementary to TEM/SEM).

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Atomic Force Microscope (AFM)

Principle and Operation

1. Atomic-Scale Interactions

- **AFM** uses a sharp tip (probe) attached to a cantilever to scan the sample surface.
- Tip-sample interactions (van der Waals, electrostatic, etc.) cause the cantilever to deflect, measured by a laser-photodiode system.

2. Imaging Modes

- o Contact Mode: Tip remains in constant contact with the sample, and can damage soft samples.
- **Tapping/Intermittent Mode**: The cantilever oscillates near its resonant frequency, gently touching the surface. Often preferred for delicate nano samples.
- **Non-contact Mode**: Tip hovers above the surface at a short distance, reducing friction forces.

Advantages for Nanoparticle Characterization

1. 3D Surface Profiling

- Provides true topographical maps of individual nanoparticles or films with vertical (z) resolution down to sub-nanometer.
- o Useful for measuring surface roughness, thickness of nano-layers, or individual particle heights.

2. Force Measurements

- Force-Distance Curves: Evaluate adhesion, elastic modulus, mechanical properties of single nanoparticles or thin films.
- Enables study of interparticle interactions, doping effects on mechanical stability.

3. Ambient or Liquid Environments

• AFM can operate in ambient, vacuum, or fluid cells, suitable for studying biological samples or colloidal dispersions in situ.

4. Limitations

- Slower scanning speed than SEM; relatively smaller field of view.
- Tip geometry can convolute measured size (tip-sample broadening effect).

Summary and Complementarity of Techniques

- 1. **TEM**: High-resolution internal structure and crystallography; ideal for sub-10 nm characterization.
- 2. **SEM**: Surface morphology and near-surface composition; simpler sample prep for many solids, 3D-like topographical views.
- 3. **Fluorescence Microscopy**: Optical imaging of labeled nanoparticles in biological contexts, real-time localization, and trafficking.
- 4. AFM: Nanoscale topography in 3D, surface forces, mechanical properties under ambient or liquid conditions.

Each approach addresses different aspects of **nanoparticle** structure, composition, and function. In research and industrial applications, **correlative microscopy**—combining two or more methods—often yields the most comprehensive picture, ensuring robust **size measurements**, **morphological details**, **chemical composition**, and **biological interactions** are accurately captured.

Concluding Remarks

Characterizing **nanoparticles** is a multidisciplinary endeavor, relying on **electron microscopy** (TEM, SEM) for direct morphological and compositional insights, **fluorescence microscopy** for functional/biological imaging, and **AFM** for high-resolution surface profiling and force measurement. A synergistic use of these techniques is critical to advance **nanotechnology** research—whether in designing next-generation drug delivery systems, constructing functional nanomaterials, or optimizing nano-enabled electronics and sensors.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Energy-Dispersive X-Ray Spectroscopy (EDS/EDX)

Principle and Instrumentation

1. Electron-Sample Interaction

- Usually integrated with an electron microscope (SEM or TEM). An electron beam bombards the sample, ejecting inner-shell electrons from sample atoms.
- **Characteristic X-Rays**: As electrons from higher shells fill these vacancies, element-specific X-ray photons are emitted.

2. Detector and Signal Processing

- A **Si(Li)** or **silicon drift detector (SDD)** captures X-ray photons, measuring energy via generating electron-hole pairs.
- The energy of these photons corresponds to specific electronic transitions, yielding characteristic peaks in the EDX spectrum.

Applications to Nanomaterials

1. Elemental Composition

- Identifies and quantifies (semi-quantitative to quantitative) the elemental constituents of nanoparticles, thin films, or complex composites.
- **Spatial Mapping**: When coupled with scanning electron microscopy (SEM-EDS mapping), reveals distribution of elements across a sample's surface or in specific regions.

2. Advantages

- Rapid, direct elemental analysis, minimal additional sample prep when already using SEM/TEM.
- Useful for verifying doping levels, detecting impurities, or analyzing core-shell structures.

3. Limitations

- Detection limits typically $\sim 0.1-1\% \times 0.1-1\%$ by weight, less sensitive for lighter elements (e.g., H. He. Li).
- \circ Spatial resolution depends on beam penetration and interaction volume; for SEM, \sim 1-2 μ m typical (somewhat higher resolution in STEM mode).

UV-Visible (UV-Vis) Absorption Spectroscopy

Principle

1. Electronic Transitions

- Molecules or nanomaterials absorb photons in the **UV-visible range** (200–800 nm) corresponding to **electronic excitations** (e.g., $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions in organic molecules, or band-to-band transitions in semiconductors)
- Metal Nanoparticles (e.g., Au, Ag) exhibit surface plasmon resonance (SPR) absorption bands, highly
 dependent on particle size, shape, and dielectric environment.

2. Setup

- **Light Source**: Typically a deuterium lamp (UV region) and tungsten/halogen lamp (visible region).
- Monochromator selects specific wavelengths, passing through a sample in solution.
- **Detector** measures intensity (I) relative to reference (I₀). Absorbance (A) = log(I₀/I).

Applications to Nanomaterials

1. SPR Peak Analysis

• **Gold Nanoparticles**: Peak around 520–540 nm (depending on size). Shifts in SPR can indicate changes in particle size, aggregation state, or surface modifications.

2. Band Gap Estimation

• For semiconductor nanoparticles (TiO₂, ZnO, CdS), Tauc plot or direct measurement of absorption edge to estimate band gap.

3. Concentration Determination

o Beer-Lambert law can quantify nanoparticle or dye concentrations if molar extinction coefficient is known.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

4. Advantages and Limitations

- o Rapid, non-destructive, widely available.
- o Does not directly provide morphological details or composition (complementary to microscopy, EDS).

Photoluminescence (PL)

Principle

1. Emission After Excitation

- A sample is excited by a photon of suitable energy, promoting electrons to higher electronic states. Upon relaxation, photons are re-emitted at characteristic longer wavelengths (lower energy).
- o In solids (quantum dots, semiconductors), electron-hole recombination yields distinct PL signatures.

2. Instrumentation

- Excitation Source: Laser or xenon lamp at a specific wavelength.
- Monochromator & Detector: Collect emitted photons vs. wavelength; can measure intensity and spectral distribution.

Applications to Nanomaterials

1. Band Gap and Electronic Structure

- ∘ Semiconductor quantum dots exhibit size-dependent PL peaks. Smaller dots → higher energy emission.
- PL lifetime measurements elucidate carrier dynamics, defect states.

2. Quality and Defect Analysis

- Changes in PL intensity or peak positions can indicate surface passivation quality, doping effects, or trap states
- o For organic fluorophores or polymeric nanoparticles, reveals quantum yield and photostability.

3. Biosensing and Imaging

• Fluorescent nanoprobes (e.g., carbon dots, upconversion nanoparticles) used in bioimaging or assays, harnessing stable photoluminescence under biological conditions.

Fourier-Transform Infrared Spectroscopy (FTIR)

Principle

1. Molecular Vibrations

- IR radiation (400–4000 cm⁻¹) is absorbed by molecular bonds undergoing vibrational transitions (stretching, bending).
- In **FTIR**, an interferometer (Michelson) collects an **interferogram**; Fourier transform yields the absorption spectrum in wavenumbers (cm⁻¹).

2. Sample Forms

- o Solid Samples: Often pressed into KBr pellets or measured in ATR (Attenuated Total Reflectance) mode.
- o Solutions or Thin Films can also be analyzed with appropriate sample holders or ATR crystals.

Applications to Nanomaterials

1. Functional Group Identification

- Confirms presence of **organic ligands**, **surfactants**, or **biomolecules** capping nanoparticles. Characteristic peaks (C–H, N–H, C=O, O–H) reveal interactions.
- o In polymeric nanoparticles, FTIR identifies backbone vibrations (C-C, C-O, etc.) and crosslinking states.

2. Surface Chemistry

- Monitoring bond formation or shifts (e.g., carboxylate binding to metal surfaces, or amine-metal interactions).
- $\circ~$ Study of oxidation state changes or doping effects in inorganic materials.

3. Advantages

- Rapid, non-destructive method for chemical fingerprinting.
- ATR-FTIR is particularly convenient for direct surface analysis with minimal prep.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Atomic Absorption Spectroscopy (AAS)

Principle

1. Element-Specific Absorption

- AAS measures the absorption of characteristic wavelengths by vaporized atoms in a flame or graphite furnace.
- A hollow cathode lamp (of the target metal) emits light at the element's resonance lines. The extent of absorption in the flame correlates to element concentration.

2. Modes

- Flame AAS: Sample solution nebulized into an acetylene/air or nitrous oxide flame.
- o Graphite Furnace AAS: Higher sensitivity, smaller sample volumes, used for trace metal detection.

Applications to Nanomaterials

1. Quantification of Metal Content

- For metallic or metal-oxide nanoparticles, AAS can measure total metal concentration after digestion in acid.
- \circ Tracking dissolution or release from nanoparticles (e.g., Ag* release from AgNPs) for toxicity or environmental impact studies.

2. Advantages and Limitations

- Highly sensitive, element-specific.
- o Does not provide structural or morphological data—complements TEM, SEM, etc.
- Requires sample digestion or dissolving NPs in a suitable solvent.

Dynamic Light Scattering (DLS)

Principle

1. Brownian Motion and Light Scattering

- **DLS** measures the intensity fluctuations of **laser light** scattered by colloidal particles undergoing Brownian motion in a liquid.
- The **autocorrelation function** of these intensity fluctuations is analyzed to extract the diffusion coefficient, translating to a **hydrodynamic diameter** via the Stokes-Einstein equation.

2. Instrumentation

- **Laser source** (e.g., He-Ne, ~633 nm).
- Photodetector collects scattered light at a set angle (commonly 90°, but also backscatter angles used).
- o Correlator calculates the time-dependent autocorrelation, yielding size distribution data.

Applications to Nanomaterials

1. Particle Size Distribution in Liquids

- · Commonly used in quality control of nanoparticle colloids, protein aggregates, polymer latexes.
- Provides **z-average** diameter and polydispersity index (PDI).

2. Stability and Aggregation Studies

- Repeated DLS measurements can track changes in size upon varying pH, ionic strength, or temperature.
- Aggregation yields larger hydrodynamic radii, shifting the distribution.

3. Advantages and Limitations

- \circ Rapid, non-destructive, minimal sample volume, particularly for submicron range (~1 nm to 1 μ m).
- Cannot distinguish shape or complex multimodal distributions if peaks overlap.
- Sensitive to refractive index assumptions and presence of large aggregates.

Concluding Remarks

Each of these techniques—EDX, UV-Vis, Photoluminescence, FTIR, AAS, and DLS—targets different facets of a material's composition, structure, surface chemistry, optical properties, and size distribution:

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

- 1. **EDX** (coupled with electron microscopy) probes **elemental composition** at submicron or nanoscale.
- 2. **UV-Vis** absorption reveals **electronic transitions**, plasmonic or band gap features crucial for optical properties and concentration estimates.
- 3. **Photoluminescence** highlights **emission** traits, enabling insights into electronic states, defects, or doping in semiconductors.
- 4. FTIR unravels functional groups and bonding on nanoparticle surfaces (organic or inorganic).
- 5. AAS quantifies metal content with high specificity—ideal for validating doping levels or measuring metal release.
- 6. **DLS** measures **hydrodynamic size** and **stability** in colloidal suspensions, indispensable for biomedical or environmental nanosafety studies.

By combining these complementary methods, researchers and engineers can obtain a holistic characterization of nanomaterials—ensuring robust design, functionality, and performance in applications spanning **drug delivery**, **catalysis**, **optical sensing**, and beyond.

© Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.