ii. Digestive System

ii. Digestive System - Digestion, Absorption and Metabolism

Introduction to the Digestive System

1. General Function

- The digestive system converts complex macromolecules in ingested food into absorbable units (monosaccharides, amino acids, fatty acids) that can be utilized for energy, growth, and repair.
- **Accessory organs** (salivary glands, liver, gallbladder, pancreas) secrete enzymes, bile, or other substances essential for efficient digestion.

2. Organization of the GI Tract

- Mouth → Pharynx → Esophagus → Stomach → Small Intestine (duodenum, jejunum, ileum) →
 Large Intestine (colon) → Rectum → Anus
- Four major layers in the GI tract wall: **mucosa**, **submucosa**, **muscularis externa** (with circular and longitudinal layers), and **serosa** (visceral peritoneum).

3. Regulatory Systems

- **Enteric Nervous System (ENS)**: "Gut brain" with local reflexes (myenteric plexus for motility, submucosal plexus for secretions and blood flow).
- Autonomic Innervation: Parasympathetic stimulation (e.g., vagus nerve) generally increases digestive activity; sympathetic stimulation reduces it.
- **GI Hormones**: Gastrin, Secretin, Cholecystokinin (CCK), Gastric Inhibitory Peptide (GIP), Motilin, etc., coordinate secretions, motility, and appetite.

Digestion

Mechanical and Chemical Digestion

1. Mastication (Chewing)

- o In the mouth, teeth grind food into smaller pieces, while saliva moistens it.
- Salivary Enzymes: Salivary amylase initiates carbohydrate digestion; lingual lipase may begin minimal lipid hydrolysis (especially in infants).

2. Swallowing (Deglutition)

- o Coordinated by the swallowing center in the medulla; the epiglottis prevents aspiration into the trachea.
- **Esophagus** uses **peristalsis** to propel the bolus into the stomach.

3. Stomach Digestion

- **Gastric secretions**: Hydrochloric acid (HCI) from parietal cells denatures proteins and activates pepsinogen → pepsin; intrinsic factor is essential for vitamin B12 absorption.
- **Mechanical churning** creates chyme. Regulated emptying into the duodenum prevents overload of the small intestine.

4. Small Intestine Digestion

- Major site of enzymatic digestion and absorption.
- **Pancreatic Secretions**: Enzymes (pancreatic amylase, lipases, proteases like trypsin and chymotrypsin) and bicarbonate to neutralize acidic chyme.
- o Bile (from liver, stored in gallbladder): Emulsifies fats, facilitating micelle formation.
- **Brush Border Enzymes** (on intestinal microvilli): Disaccharidases (lactase, sucrase, maltase), peptidases, etc., finalize nutrient breakdown.

Key Digestion Pathways

- Carbohydrates: Polysaccharides → Oligosaccharides → Disaccharides → Monosaccharides (glucose, fructose, galactose).
- **Proteins**: Polypeptides → Oligopeptides → Amino acids.
- Lipids: Triglycerides → Monoglycerides + Free fatty acids (via pancreatic lipase). Emulsification by bile is critical.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

Absorption

Sites and Mechanisms

1. Small Intestine

- **Primary region** for nutrient absorption—particularly the jejunum and, to some extent, the duodenum and ileum.
- Surface Area Amplification: Mucosal folds, villi, and microvilli (brush border) dramatically increase absorptive capacity.

2. Transport Mechanisms

- **Carbohydrates**: Monosaccharides (glucose, galactose) actively transported via SGLT1 (Na^+-cotransporter), fructose via GLUT5 (facilitated diffusion). All exit enterocytes by GLUT2 into the bloodstream.
- Proteins: Amino acids and di/tripeptides often enter via proton or Na^+-dependent carriers (PepT1).
- Lipids: Form micelles (with bile salts). At the enterocyte surface, lipids diffuse in, are re-esterified to triglycerides, and packaged into chylomicrons which enter lacteals (lymphatic vessels) before reaching the systemic circulation.

• Vitamins and Minerals:

- Fat-soluble vitamins (A, D, E, K) co-absorb with dietary lipids.
- Water-soluble vitamins are mostly absorbed by specific transporters or diffusion.
- Mineral absorption (iron, calcium) is tightly regulated; e.g., iron regulated by hepcidin, calcium influenced by vitamin D.

3. Large Intestine

- ∘ Primarily absorbs water and electrolytes (Na^+, Cl^−).
- Resident microbiota ferment undigested carbohydrates, producing short-chain fatty acids which can be absorbed and utilized as energy sources.

Regulation and Pathophysiological Considerations

- Hormonal Modulation: CCK, secretin, GIP, etc., coordinate secretory and absorptive processes.
- **Neural Influences**: Local reflexes and autonomic pathways fine-tune motility, secretion.
- Malabsorption Syndromes: Examples include celiac disease (villous atrophy), chronic pancreatitis (enzyme insufficiency), Crohn's disease.

Metabolism

Once absorbed, nutrients enter metabolic pathways. **Metabolism** comprises all biochemical reactions, including **catabolism** (breakdown for energy) and **anabolism** (synthesis of complex molecules).

Carbohydrate Metabolism

1. Glycolysis

- o Cytoplasmic process splitting glucose into pyruvate; net 2 ATP and 2 NADH per glucose.
- Under anaerobic conditions, pyruvate is reduced to lactate (lactic acid fermentation).

2. Pyruvate Oxidation and TCA Cycle (Citric Acid Cycle)

- o In the mitochondrial matrix, pyruvate is converted to acetyl-CoA, which enters the TCA cycle.
- Yields CO_2, NADH, FADH_2, and GTP/ATP.

3. Oxidative Phosphorylation (Electron Transport Chain)

- $\circ~$ NADH, FADH_2 donate electrons to the ETC in the mitochondrial inner membrane.
- o Proton gradient drives ATP synthase, generating the majority of ATP in aerobic respiration.

4. Glycogenesis and Glycogenolysis

- Glucose is stored as glycogen mainly in the liver and muscle.
- $\circ \ \ \text{Glycogen breakdown can release glucose (liver) into the bloodstream or supply muscle cells during exercise.}$

Lipid Metabolism

1. Beta-Oxidation

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

- $\circ\;$ Fatty acids are transported to mitochondria, broken down to acetyl-CoA units.
- o High energy yield per molecule of fat but requires sufficient oxygen.

2. Ketogenesis and Ketolysis

 In carbohydrate deficit (fasting, low-carb diets, uncontrolled diabetes), excess acetyl-CoA in the liver forms ketone bodies (acetoacetate, β-hydroxybutyrate).

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

• Extrahepatic tissues can reconvert ketone bodies to acetyl-CoA for ATP production.

3. Lipid Transport

- o Chylomicrons, VLDL, LDL, HDL move lipids through blood.
- Hormone-sensitive lipase in adipose tissue mobilizes fatty acids for oxidation.

Protein Metabolism

1. Amino Acid Catabolism

 Deamination removes nitrogen (excreted as urea), and the carbon skeleton enters gluconeogenesis or TCA cycle.

2. Transamination

o Transfer of amino groups, key for synthesizing non essential amino acids and for nitrogen disposal.

Integration of Metabolism

1. Fed State (Postprandial)

- o Insulin promotes glucose uptake, glycogen, and triglyceride synthesis.
- o Amino acids used for protein synthesis or deaminated if in excess.

2. Fasting State

- o Glucagon drives glycogenolysis, gluconeogenesis, lipolysis; prolonged fasting shifts to ketone production.
- o Muscle protein can be catabolized to supply substrates for gluconeogenesis.

3. Hormonal Regulation

- o Insulin (anabolic hormone): Lowers blood glucose, promotes storage.
- o **Glucagon** and **Epinephrine** (catabolic hormones): Increase blood glucose, mobilize energy stores.
- o **Cortisol**: Affects protein and glucose metabolism, stress response.

Concluding Remarks

From **mechanical and chemical digestion** in the upper GI tract to **selective absorption** in the small intestine and **fermentation** in the large intestine, the human digestive system is finely tuned to optimize nutrient breakdown and uptake. These nutrients fuel **metabolic pathways** in cells across the body, interfacing with **endocrine** and **nervous** control to maintain **homeostasis** and support essential processes like growth, repair, and energy expenditure.

Understanding the coordinated interplay of **digestion, absorption, and metabolism** is fundamental for addressing nutritional deficiencies, metabolic disorders (e.g., diabetes, obesity), and GI diseases, and forms the basis for many therapeutic interventions and dietary strategies.

Key Takeaways

- Mechanical and Chemical Digestion reduce food to absorbable units.
- Small Intestine is the primary site of nutrient absorption, aided by brush border enzymes and bile/emulsification.
- **Metabolic pathways** (glycolysis, TCA cycle, β-oxidation, etc.) under hormonal regulation integrate nutrients into energy production and biosynthesis.
- **Clinical Relevance**: Disorders in any stage (digestion, absorption, metabolic regulation) can compromise nutrient status and systemic health.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.