ii. Carbohydrate chemistry and metabolism...

ii. Carbohydrate chemistry and metabolism, Disorders associated with carbohydrate metabolism

Carbohydrate Chemistry

Classification and Structure

1. Monosaccharides

- **Definition**: Simple sugars with general formula (CH2O)n\mathrm{(CH_2O)}_n(CH2O)n. The most common biologically relevant forms range from 3 to 7 carbons (trioses, tetroses, pentoses, hexoses, heptoses).
- Examples: Glucose (aldohexose), fructose (ketohexose), galactose (aldohexose), ribose (aldopentose).
- **Stereochemistry**: Existence of chiral centers leads to D- and L-forms. In nature, **D-configuration** predominates for sugars.
- **Ring Formation**: Hexoses typically cyclize to form **pyranose** rings (6-membered) or **furanose** rings (5-membered) via intramolecular hemiacetal or hemiketal linkages.

2. Disaccharides

- **Definition**: Two monosaccharides linked by a **glycosidic bond** (e.g., $\alpha(1\rightarrow 4)$, $\beta(1\rightarrow 2)$).
- Examples:
 - **Sucrose** (glucose–fructose, α -1 \rightarrow 2 bond).
 - **Lactose** (glucose-galactose, β-1→4 bond).
 - **Maltose** (glucose–glucose, α -1 \rightarrow 4 bond).

3. Polysaccharides

- Homopolysaccharides: Composed of one type of monomer (e.g., glycogen, starch, cellulose).
- Heteropolysaccharides: Composed of two or more monomeric species (e.g., glycosaminoglycans).
- **Branching**: Glycogen and amylopectin (branched starch) have $\alpha(1\rightarrow 6)$ branch points in addition to $\alpha(1\rightarrow 4)$ linkages, allowing compact energy storage and rapid mobilization.

4. Glycoconjugates

- Glycoproteins: Proteins with oligosaccharide chains covalently attached (N-linked or O-linked).
- **Proteoglycans**: Heavily glycosylated proteins with glycosaminoglycan chains, crucial for extracellular matrix structure.
- o Glycolipids: Lipids with carbohydrate moieties (e.g., gangliosides in neuronal membranes).

Carbohydrate Metabolism

Overview of Central Pathways

1. Glycolysis

- Location: Cytosol of all cells.
- Function: Breakdown of 1 glucose (6C) into 2 pyruvate (3C each), net gain of 2 ATP and 2 NADH.
- **Regulation**: Key control points at **hexokinase/glucokinase**, **phosphofructokinase-1 (PFK-1)**, and **pyruvate kinase**. Modulated by ATP/AMP ratios, citrate, and fructose-2,6-bisphosphate.

2. Glycogen Metabolism

- **Glycogenesis**: Synthesizes glycogen from glucose monomers, catalyzed by **glycogen synthase** (α -1 \rightarrow 4 linkages) and **branching enzyme** (α -1 \rightarrow 6). Predominant in liver and muscle.
- Glycogenolysis: Breaks down glycogen to glucose-1-phosphate via glycogen phosphorylase and debranching enzyme. The liver contributes glucose to blood; muscle uses glucose-6-phosphate internally for ATP.

3. Gluconeogenesis

- Location: Mainly liver (and kidney cortex).
- Function: Synthesis of glucose from non-carbohydrate precursors (lactate, glycerol, amino acids).
- Regulation: Reciprocal control with glycolysis. Key enzymes include fructose-1,6-bisphosphatase (F-1,6-BPase), PEP carboxykinase (PEPCK), pyruvate carboxylase. Inhibited by AMP, fructose-2,6-bisphosphate; stimulated by glucagon, cortisol.

4. Pentose Phosphate Pathway (PPP)

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

- **Phases**: Oxidative phase (generates NADPH, ribulose-5-phosphate) and non-oxidative phase (interconverts sugars for nucleotide biosynthesis, glycolysis intermediates).
- **Importance**: NADPH for reductive biosynthesis (fatty acids, cholesterol), protection against oxidative stress (glutathione reduction). Ribose-5-phosphate for nucleotide synthesis.

5. TCA Cycle and Oxidative Phosphorylation

- Pyruvate from glycolysis is decarboxylated to acetyl-CoA (link reaction), entering the TCA cycle in mitochondria.
- o Complete oxidation of acetyl-CoA produces CO₂, NADH, FADH₂.
- NADH and FADH₂ feed electrons into the **electron transport chain**, generating a proton gradient that drives ATP synthesis.

Hormonal and Allosteric Regulation

- **Insulin**: Anabolic hormone secreted by pancreatic β-cells; promotes glucose uptake in muscle/adipose, stimulates glycogenesis and glycolysis, inhibits gluconeogenesis.
- **Glucagon**: Catabolic hormone secreted by pancreatic α-cells; stimulates glycogenolysis, gluconeogenesis, inhibits glycolysis in the liver.
- Epinephrine: Adrenal hormone that activates glycogenolysis (muscle, liver) for rapid energy release during stress.
- Cortisol: Enhances gluconeogenesis, long-term metabolic adaptations to stress or fasting.

Disorders Associated with Carbohydrate Metabolism

Diabetes Mellitus

1. Type 1 Diabetes (T1DM)

- \circ Autoimmune destruction of pancreatic β -cells \rightarrow absolute insulin deficiency.
- Clinical Features: Hyperglycemia, ketoacidosis, polyuria, polydipsia, weight loss.
- **Treatment**: Exogenous insulin administration.

2. Type 2 Diabetes (T2DM)

- $\circ\,$ Insulin resistance in peripheral tissues + relative insulin deficiency.
- Clinical Features: Hyperglycemia, often associated with obesity, metabolic syndrome.
- **Complications**: Cardiovascular disease, neuropathy, nephropathy, retinopathy.
- o Management: Lifestyle interventions, oral hypoglycemics (e.g., metformin), or insulin when needed.

3. Gestational Diabetes

• Hyperglycemia arising during pregnancy; increases fetal/macrosomia risk. Often resolves postpartum but raises later T2DM risk.

Glycogen Storage Diseases (GSDs)

- 1. **Type I: Von Gierke's Disease** (Glucose-6-phosphatase deficiency)
 - Severe fasting hypoglycemia, lactic acidosis, hyperuricemia, hyperlipidemia.
 - \circ Inability to release free glucose from the liver \rightarrow accumulation of G6P, increased glycolysis, lactate production.
- 2. **Type II: Pompe Disease** (Lysosomal α-1,4-glucosidase deficiency)
 - Glycogen accumulates in lysosomes, affecting muscle/cardiac function; cardiomyopathy, hypotonia in infancy.
 - Enzyme replacement therapy available.
- 3. **Type III: Cori Disease** (Debranching enzyme deficiency)
 - o Milder hypoglycemia than Type I, accumulation of limit dextrin-like structures in cytosol.
- 4. **Type V: McArdle Disease** (Muscle glycogen phosphorylase deficiency)
 - $\circ~$ Exercise intolerance, muscle cramps, myoglobinuria, no rise in blood lactate during exercise.
- 5. **Type VI: Hers Disease** (Liver glycogen phosphorylase deficiency)
 - Mild fasting hypoglycemia, mild hepatomegaly.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

Disorders of Fructose and Galactose Metabolism

1. Hereditary Fructose Intolerance (HFI)

- Aldolase B deficiency; fructose-1-phosphate accumulates in liver, causing hypoglycemia, jaundice, vomiting.
- o Dietary fructose/sucrose/sorbitol must be restricted.

2. Essential Fructosuria

• Benign, due to deficiency in **fructokinase**; fructose appears in urine.

3. Galactosemia

- Classic Galactosemia (Galactose-1-phosphate uridyltransferase deficiency): Accumulation of galactose-1-phosphate, galactose → toxic effects in liver, brain, eyes (cataracts). Early dietary restriction of galactose is essential.
- o Galactokinase deficiency: Milder, primarily causes cataracts due to galactitol accumulation.

Lactose Intolerance

- Primary Lactase Deficiency: Common in adults of certain ethnicities; reduced lactase enzyme leads to bloating, diarrhea upon lactose ingestion.
- Secondary Lactase Deficiency: Due to intestinal damage (infections, celiac disease).

Pyruvate Metabolism Disorders

1. Pyruvate Dehydrogenase Complex Deficiency

- Causes lactic acidosis, neurological defects, congenital forms of Leigh syndrome.
- Impaired aerobic oxidation of pyruvate → shifts towards lactate production.

2. Lactic Acidosis

- Elevated lactate due to hypoxia, mitochondrial disorders, or enzyme deficiencies.
- Symptoms include muscle weakness, rapid breathing, organ dysfunction.

Integrative Perspective

- **Energy Homeostasis**: Carbohydrates are the primary quick energy source; the body finely regulates glucose availability (glycogen stores, gluconeogenesis) to meet demands.
- **Lipid and Protein Interplay**: In prolonged fasting or diabetes, inadequate carbohydrate metabolism leads to increased lipolysis, ketone body production, and potential ketoacidosis. Proteins can be mobilized to provide gluconeogenic substrates.
- **Gene-Environment Interactions**: Modern dietary patterns (high sugar intake) plus genetic susceptibilities can lead to metabolic syndrome and T2DM.
- **Biotechnology and Therapeutics**: Advances in insulin analogues, enzyme replacement therapy (Pompe disease), or gene therapy for certain GSDs showcase the applications of understanding carbohydrate biochemistry.

Concluding Remarks

Carbohydrates serve dual roles in **structural** (cell walls, extracellular matrix) and **metabolic** (energy) functions. Their pathways—ranging from **glycolysis** and **glycogenesis** to **gluconeogenesis** and **pentose phosphate**—are tightly regulated by **enzymes** and **hormones** to maintain **glucose homeostasis**. Dysfunction in these pathways—whether due to enzyme deficiencies, dysregulated hormones, or genetic mutations—causes clinically significant **disorders** (e.g., **diabetes mellitus**, **glycogen storage diseases**, **fructose/galactose metabolic disorders**).

Understanding **carbohydrate chemistry and metabolism** is thus central to **clinical diagnostics** (e.g., blood glucose tests, GTT), **therapeutic interventions** (insulin, dietary management), and **biochemical research** aimed at dissecting metabolic flux, enzyme regulation, and novel treatments for metabolic diseases.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.