i. Fundamentals of human physiology and cellular function

Introduction to Human Physiology

1. Definition and Scope

- Physiology studies the mechanical, physical, and biochemical functions of living organisms.
- Human physiology focuses on how cells, tissues, and organs coordinate to maintain health and respond to internal and external challenges.

2. Homeostasis

- Coined by Walter Cannon, homeostasis refers to the body's ability to maintain stable internal conditions (e.g., temperature, pH, ion concentrations) despite external fluctuations.
- Involves **feedback loops**—negative feedback (common; opposes change) and positive feedback (less common; amplifies an initial stimulus, e.g., in blood clotting or labor contractions).

3. Levels of Organization

- Cellular → Tissues → Organs → Organ Systems
- Specialized cell types form tissues with distinct structures and functions, which integrate into larger organ systems (e.g., nervous, cardiovascular, respiratory).

Cellular Architecture and Function

1. Cell Membrane and Fluid Compartments

- Phospholipid Bilayer: Embedded with proteins (channels, transporters, receptors) and cholesterol (stabilizes fluidity).
- Intracellular Fluid (ICF): High K^+, low Na^+, abundant proteins and organelles.
- Extracellular Fluid (ECF): Composed of interstitial fluid and plasma, higher Na^+, lower K^+, crucial for nutrient delivery and waste removal.

2. Organelles

- $\circ~$ Nucleus: Houses genetic material (DNA), site of transcription, cell cycle control.
- **Mitochondria**: Powerhouse for ATP production via oxidative phosphorylation, also key in apoptosis and calcium buffering.
- Endoplasmic Reticulum (ER):
 - Rough ER: Synthesizes membrane-bound and secretory proteins.
 - Smooth ER: Lipid metabolism, detoxification, calcium storage.
- o **Golgi Apparatus**: Modifies, sorts, and packages proteins/lipids for secretion or organelle targeting.
- **Lysosomes/Peroxisomes**: Degradation and recycling of cellular waste; detoxification of reactive oxygen species.

3. Cytoskeleton

- Microfilaments (Actin): Cell shape, motility, muscle contraction (in concert with myosin).
- Intermediate Filaments: Structural integrity (e.g., keratins, neurofilaments).
- o Microtubules: Intracellular transport, mitotic spindle, ciliary/flagellar motility (with dynein, kinesin).

Membrane Transport and Electrochemical Gradients

1. Passive Transport

- o Simple Diffusion: Movement of small or lipid-soluble molecules down their concentration gradient.
- **Facilitated Diffusion**: Movement down a gradient via carrier proteins or ion channels (e.g., glucose transporter, ion-specific channels).

2. Active Transport

- **Primary Active Transport**: Directly uses ATP (e.g., Na^+/K^+ ATPase pumping Na^+ out, K^+ in).
- **Secondary Active Transport**: Coupled transport (e.g., Na^+-glucose symport) uses the gradient established by a primary pump.

3. Vesicular Transport

• **Endocytosis** (phagocytosis, pinocytosis, receptor-mediated) and **Exocytosis** (secretion of hormones, neurotransmitters) require membrane remodeling and ATP.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

4. Membrane Potential

- Resting Membrane Potential (RMP): Cells maintain an electrical potential difference (usually -70 mV in neurons) due to ion gradients and selective permeability.
- **Excitable Cells**: Neurons and muscle cells can rapidly alter membrane potential (action potentials, signaling).

Intercellular Communication

1. Chemical Messengers

- Hormones (Endocrine Signaling): Released into the bloodstream by glands, act on distant targets (e.g., insulin, cortisol).
- Paracrine Factors: Local signaling molecules (e.g., nitric oxide, growth factors).
- **Neurotransmitters**: Released by neurons into synaptic clefts for rapid, localized signaling (e.g., acetylcholine, dopamine).

2. Receptors

- Cell-Surface Receptors: G protein-coupled receptors (GPCRs), ion channels, enzyme-linked receptors.
- Intracellular Receptors: For lipophilic molecules (e.g., steroid hormones); alter gene transcription directly in the nucleus.

3. Signal Transduction Cascades

- **Second Messengers** (cAMP, Ca^2+, IP 3, DAG) amplify signals.
- Protein Kinase Cascades (e.g., MAPK, PKA, PKC) modulate cellular processes—gene expression, metabolism, cell division.

Tissue Organization and Function

1. Epithelial Tissue

- o Covers body surfaces and lines cavities (e.g., intestines, kidney tubules).
- o Functions in protection, absorption, secretion.
- o Tight junctions form selectively permeable barriers.

2. Connective Tissue

- Provides structural support (extracellular matrix, collagen, elastin).
- o Includes bone, cartilage, blood, adipose tissues.
- Fibroblasts, osteoblasts, chondrocytes produce and maintain ECM.

3. Muscle Tissue

- **Skeletal Muscle**: Voluntary control, striated fibers, multinucleated.
- Cardiac Muscle: Involuntary, striated, intercalated discs for synchronized contraction.
- Smooth Muscle: Involuntary, non-striated, present in walls of hollow organs (e.g., intestines, blood vessels).

4. Nervous Tissue

- Neurons: Excitable cells that transmit electrical impulses.
- o **Glial Cells**: Support and protect neurons (astrocytes, oligodendrocytes/Schwann cells for myelin formation).

Integration into Organ Systems

1. Neural Control

- o Central (brain and spinal cord) and peripheral nervous systems coordinate rapid communication.
- Reflex arcs integrate sensory inputs with motor outputs for immediate responses.

2. Endocrine Regulation

• Hormone-secreting glands (pituitary, thyroid, adrenals, pancreas) orchestrate slower, long-term regulation (e.g., growth, metabolism, reproduction).

3. Cardiovascular and Respiratory Systems

- Work together to supply oxygen, remove CO₂, circulate nutrients, and maintain tissue perfusion.
- **Homeostatic Mechanisms**: Blood pressure control (baroreceptor reflex), regulation of blood gases (chemoreceptors).

4. Renal and Digestive Systems

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

- **Kidneys** filter blood, maintain electrolyte balance and pH, excrete waste (urea).
- **Gastrointestinal Tract** breaks down nutrients, absorbs them into circulation, eliminates undigested residues.

5. Immune and Lymphatic Systems

 Defend against pathogens, clear damaged cells, involve both innate (macrophages, neutrophils) and adaptive immunity (T/B lymphocytes).

Concluding Perspectives

Human physiology is fundamentally anchored in **cellular function**—how cells harness chemical gradients, respond to signals, generate electrical impulses, and coordinate their activities to sustain life. The human body relies on a delicate **equilibrium** maintained by feedback mechanisms across organ systems. Advances in molecular and cellular biology continue to deepen our knowledge, informing disciplines from **medicine** and **pharmacology** to **bioengineering** and **systems biology**. Understanding these foundational principles is essential for exploring disease pathology (when regulation fails) and designing novel therapeutic interventions.

Key Takeaways

- Cellular organization underpins tissue and organ function.
- Membrane physiology (transport, potentials) drives excitability, communication, and metabolism.
- Tissue specialization (epithelial, connective, muscle, nervous) enables the diverse roles of organ systems.

Homeostatic feedback loops and **signal transduction** unify processes across systems, ensuring adaptability and stability in a changing environment.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.