

## 5. Carbohydrates, Proteins, and Fats - Structure, sources, and functions

### Carbohydrates · Proteins · Fats

#### Structure — Dietary Sources — Physiological Functions

## 1 · Carbohydrates

### 1.1 Chemical Architecture

- **Monosaccharides** – single 6-carbon units (glucose, fructose) absorbed by SGLT-1 & GLUT-5.
- **Disaccharides** – two monosaccharides linked by  $\alpha/\beta$ -glycosidic bonds; hydrolysed by brush-border enzymes (e.g., lactase).
- **Oligosaccharides** – 3-10 units;  $\alpha$ -galactosides in legumes escape digestion, act as prebiotics.
- **Digestible polysaccharides** – starch (20 % amylose, 80 % amylopectin) plus animal glycogen.
- **Non-digestible polysaccharides** – insoluble cellulose & hemicellulose; soluble pectin,  $\beta$ -glucan; resistant starch.

**1.2 Dietary Sources & Quality** – Explore the interactive sheet “**Carbohydrate Classification & Key Features**.” Note how whole-grain cereals and millets supply complex starch + fibre, whereas fruits add fructose plus polyphenols.

### 1.3 Key Functions

1. **Energy** – 4 kcal · g<sup>-1</sup>, sparing amino acids from catabolism.
2. **Protein sparing** – adequate glucose prevents gluconeogenesis from muscle.
3. **GI Health** – fermentable fibres → SCFA production; insoluble fibre expedites transit.
4. **Biosynthesis** – pentose phosphate pathway yields NADPH & ribose for nucleotides.

#### Carbohydrate Classification & Key Features:

| Category                                      | Representative Units                       | Common Food Sources              | Key Physiological Features                       |
|-----------------------------------------------|--------------------------------------------|----------------------------------|--------------------------------------------------|
| <b>Monosaccharides</b>                        | Glucose, Fructose, Galactose               | Honey, ripe fruits               | Rapid ATP supply                                 |
| <b>Disaccharides</b>                          | Sucrose, Lactose, Maltose                  | Table sugar, milk, malted drinks | Quick energy + aids calcium absorption (lactose) |
| <b>Oligosaccharides</b>                       | Raffinose, Stachyose                       | Legumes, whole grains            | Prebiotic; gas production                        |
| <b>Digestible Polysaccharides</b>             | Starch (Amylose & Amylopectin), Glycogen   | Rice, wheat, maize, potatoes     | Primary caloric source worldwide                 |
| <b>Non-digestible Polysaccharides (Fibre)</b> | Cellulose, $\beta$ -glucan, Pectin, Inulin | Whole grains, vegetables, fruits | Gut motility, cholesterol lowering               |

## 2 · Proteins

### 2.1 Structural Levels (see “Protein Structural Hierarchy” table)

- **Primary** – peptide-bonded AA sequence; mutations alter function (e.g., sickle cell Hb).
- **Secondary** –  $\alpha$ -helices/ $\beta$ -sheets via H-bonds; disrupted by heat, pH.
- **Tertiary** – 3-D folding creates active sites; stabilised by hydrophobic interactions, disulfides.
- **Quaternary** – multiple polypeptides (e.g., Hb tetramer) enable cooperativity.

#### Protein Structural Hierarchy:

| Structural Level Bonding / Forces | Dietary Implication |
|-----------------------------------|---------------------|
|-----------------------------------|---------------------|

|                   |                                       |                                      |
|-------------------|---------------------------------------|--------------------------------------|
| <b>Primary</b>    | Peptide bonds                         | AA sequence determines quality       |
| <b>Secondary</b>  | Hydrogen bonds                        | Heat can disrupt → denature          |
| <b>Tertiary</b>   | Hydrophobic, ionic, disulfide bridges | Proper folding essential for enzymes |
| <b>Quaternary</b> | Hydrophobic & ionic between subunits  | Subunit separation during digestion  |

#### Protein Quality & Content Of Selected Foods:

| Food           | Protein g/100g | PDCAAS |
|----------------|----------------|--------|
| <b>Egg</b>     | 13.0           | 1.0    |
| <b>Milk</b>    | 3.3            | 1.0    |
| <b>Chicken</b> | 27.0           | 0.92   |
| <b>Soybean</b> | 36.0           | 0.92   |
| <b>Lentils</b> | 9.0            | 0.75   |
| <b>Wheat</b>   | 11.0           | 0.54   |

#### 2.2 Amino-Acid Essentials

Nine indispensable AAs must be supplied exogenously; histidine is critical in rapid growth; arginine becomes conditionally essential in trauma.

#### 2.3 Sources & Quality

Interactive datasets rank foods by grams protein and PDCAAS. The bar chart “**Protein Quality Score of Common Foods**” highlights egg and milk as reference proteins (PDCAAS = 1.0), soybean as the best plant source, and the importance of cereal-pulse complementation.

#### 2.4 Biological Roles

- **Structural** – collagen, actin-myosin.
- **Functional** – enzymes, hormones (insulin), antibodies (IgG).
- **Transport** – haemoglobin, albumin.
- **Regulatory** – oncotic pressure, acid-base buffering (imidazole of histidine).
- **Energy (starvation)** – gluconeogenic substrate,  $4 \text{ kcal} \cdot \text{g}^{-1}$ .



### 3 · Fats / Lipids

**3.1 Chemical Spectrum** – From simple fatty acids to complex phospholipids and sterols (see “**Types of Dietary Fat & Health Notes**”).

- **SFA** – fully hydrogenated; solid at room temp, hypercholesterolaemic in excess.
- **MUFA** – oleic acid-rich oils; improve HDL/LDL ratio.
- **PUFA** –  $\omega$ -6 linoleic vs.  $\omega$ -3  $\alpha$ -linolenic & long-chain EPA/DHA; crucial for eicosanoid synthesis and neural development.
- **Trans FA** – industrial hydrogenation by-products; pro-inflammatory.
- **Phospholipids** – amphipathic; build cell membranes, lipoproteins.
- **Cholesterol** – precursor for bile acids, vitamin D, steroid hormones.

#### 3.2 Dietary Sources

Ghee & coconut oil for SFA; olive/ground-nut for MUFA; sunflower & flaxseed for PUFA; vanaspati for trans fats (avoid); egg yolk and liver for sterols.

#### 3.3 Physiological Functions

1. **Energy reserve** –  $9 \text{ kcal} \cdot \text{g}^{-1}$ ; adipose cushioning and insulation.
2. **Cellular architecture** – membrane fluidity governed by FA composition.
3. **Hormone & signalling** – prostaglandins, leukotrienes, thromboxanes from PUFA.
4. **Nutrient absorption** – micellar solubilisation of vitamins A D E K.
5. **Satiety & flavour** – slow gastric emptying; carry lipid-soluble aromas.

#### Types Of Dietary Fat & Health Notes:

| Type | Key Example | Major Sources | Health Note |
|------|-------------|---------------|-------------|
|------|-------------|---------------|-------------|

---

|                      |                    |                                |                                 |
|----------------------|--------------------|--------------------------------|---------------------------------|
| <b>SFA</b>           | Palmitic 16:0      | Butter, ghee, coconut          | ↑ LDL if excess                 |
| <b>MUFA</b>          | Oleic 18:1         | Olive, groundnut, mustard oils | Cardio-protective               |
| <b>PUFA ω-6</b>      | Linoleic 18:2      | Sunflower, soybean oil         | Essential FA for eicosanoids    |
| <b>PUFA ω-3</b>      | α-Linolenic 18:3   | Flaxseed, chia, fish oils      | Anti-inflammatory, brain health |
| <b>Trans FA</b>      | Elaidic 18:1 trans | Vanaspatti, fried snacks       | ↑ CVD risk                      |
| <b>Phospholipids</b> | Lecithin           | Egg yolk, soy                  | Membrane component              |
| <b>Sterols</b>       | Cholesterol        | Egg yolk, liver                | Hormone precursor               |

---

## 4 · Integrated Macronutrient Interplay

- Adequate carbohydrate ensures amino acids build tissue instead of being oxidised.
- Essential fatty acids modulate gene expression influencing lipid & glucose metabolism (PPAR activation).
- High-quality protein improves satiety, facilitating healthier fat and carbohydrate choices.

A balanced diet (Chapter 4) orchestrates these macronutrients within recommended proportions, complemented by micronutrients to optimise metabolic harmony.

---

### Quick Review

1. **Describe** the structural difference between amylose and amylopectin and its effect on glycaemic index.
2. **Explain** why combining wheat roti with dal yields a higher biological value protein than either food alone.
3. **List** three functions of phospholipids beyond membrane structure.