

Chapter 7. Clinical Applications and Case Studies

Part 1: Integrative Physiology & Biochemistry for Physiotherapy

☐ 1. Learning Objectives

By the end of this section, you should be able to:

1. Synthesize Cardiovascular, Respiratory, Musculoskeletal and Metabolic Principles

When a patient has difficulty walking or breathing, multiple systems are involved. For example:

- A weak heart (cardiovascular system) may not pump enough blood.
- Poor lung function (respiratory) can reduce oxygen delivery.
- Weak muscles or joints (musculoskeletal) may limit movement.
- Metabolic disorders like diabetes or malnutrition can reduce endurance or healing.

☐ Integration: You'll learn to "connect the dots" between these systems to explain a patient's signs (e.g., fatigue, breathlessness) and functional limits (e.g., can't walk far or lift weight).

2. Translate Lab & Bedside Data into Physiotherapy Decisions

You must be able to read and understand reports like:

- ECG (electrocardiogram) for heart rhythm
- ABG (arterial blood gas) for oxygen & CO₂
- Creatine Kinase (CK) for muscle damage
- Glucose levels for energy and diabetes

Use case: High CK after strength training → reduce load.
 Low oxygen on ABG → use breathing techniques or oxygen therapy.

3. Design Evidence-Based Intervention Plans

You'll learn to:

- Adjust **posture** for better breathing
- Plan breathing retraining for COPD
- Prescribe **nutrition** for muscle recovery
- Modify **loading** in rehab (e.g., after ACL surgery)

☐ Everything you prescribe (exercise, breathing, diet) must **correct abnormal physiology/biochemistry** without overloading the body.

4. Employ Structured Clinical Reasoning

Use a step-by-step, logical process to decide:

- What's wrong?
- Which system is affected?
- What exercise or treatment is safe?

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

• When to progress or slow down?

 $\hfill \square$ It prevents $\hfill ext{trial-and-error therapy}$ and improves patient safety.

2. Integrated Framework for Clinical Reasoning - Step by Step

Step	Explanation	Link with Physiology/Biochemistry
1. History & Vitals	Note patient's heart rate (HR), blood pressure (BP), SpO ₂ , etc.	HR and BP reflect cardiac output. SpO ₂ reflects oxygen delivery. Capillary refill reflects microcirculation.
2. Movement Analysis	Look at range of motion (ROM), strength, endurance.	Shows muscle fibre type, energy pathways used, and joint status.
3. Lab/Imaging	Check tests like CK, Troponin, ABG, HbA1c, DEXA.	Understand muscle damage, glucose control, oxygen status, and bone strength.
4. Problem List	Convert findings to impairments → activity limits → participation.	Helps set therapy goals and prioritise risks.
5. Intervention Selection	Choose exercise type, intensity, nutrition, education.	Must match patient capacity and help restore function.
6. Outcome Measures	Use VO ₂ max, 6-Min Walk Test, grip strength, pain score, QoL.	Track progress over time and adjust therapy accordingly.

☐ 3. Case Studies - Integrated Explanations

☐ Case 1: Post-Heart Attack Rehab (STEMI)

Patient: 59-year-old male, heart attack 2 days ago, stent placed.

Observation	Meaning	PT Plan
HR 88, BP 128/78, CK-MB high	Heart is weak; relies on faster HR for cardiac output	Phase 1 Rehab : Light marching in place, short duration, watch HR—don't exceed 110 bpm
Hb 11 g/dL	Less oxygen carried in blood	Seated rests, monitor SpO ₂ above 94%
LDL 162 mg/dL	High cholesterol	Teach DASH diet, explain statins block cholesterol formation

☐ Case 2: COPD with Sarcopenia

Patient: 68-year-old female, severe lung disease, underweight.

Observation	Meaning	PT Plan
SpO ₂ 91%, CO ₂ 52	Blunted brain response to CO ₂ ; relies on low oxygen to breathe	Interval cycling with oxygen support, keep O_2 in safe zone (88–92%)
Low muscle size & grip strength	Loss of fast-twitch muscle, inflammation	Blood flow restriction (BFR) training + whey protein + leucine post-exercise
IL-6, CRP high	Inflammatory state	Omega-3 (EPA/DHA) to reduce pain & inflammation pathways

□ Case 3: Diabetes with Non-Healing Foot Ulcer

Patient: 55-year-old male, poor sugar control, low blood flow.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

ObservationMeaningPT PlanHbA1c 9%Poor long-term glucose control; damages collagenControl carbs before/after exercise; monitor blood glucoseABI 0.75Narrow arteries; poor foot circulationClaudication training: Walk to pain, rest, repeat - improves blood flowChronic ulcerPoor healing, possible infectionHigh-protein diet, vit C + zinc, off-load foot, clean with pulsed layers

lavage

☐ Case 4: ACL Surgery Rehab (Hamstring Graft)

Patient: 24-year-old female, 6 weeks post-surgery.

Observation Meaning PT Plan

High CK after therapy Mild muscle damage; needs rest Electrical stimulation (NMES) + voluntary quad contraction

Bone tunnels healing Graft needs load, calcium, vit D Step-up training, vit D supplement if low

Graft turning to ligament Needs collagen & oxygen Bike with low resistance, iron-rich food for healing tissues

☐ 4. Clinical Integration Tips

Symptom/Lab Which System? What Can PT Do?

HR keeps rising Cardiovascular, endocrine Check over-training, meds, fluid balance Muscle pain + high CK Muscle injury or statin effect Reduce exercise, ensure protein intake SpO₂ drops post-exercise Lungs or low hemoglobin Pursed-lip breathing, oxygen support

☐ 5. Self-Check Quiz (with Answers)

- Q1. Which metabolic pathway limits walking in PAD and how does interval training help?
- → Anaerobic glycolysis gets overloaded due to poor blood flow.
- → Training improves mitochondrial function and promotes new blood vessels.
- Q2. How do omega-3s reduce tendon pain?
- → They block inflammatory molecules (PGE2), shifting toward healing molecules like **resolvins**.
- Q3. Red flags for stopping Phase-II cardiac rehab?
- → ECG: ST depression >2 mm
- → Biochem: Rising **Troponin T** or **CK-MB**
- Q4. Why does a COPD patient desaturate more on arm exercise?
- \rightarrow Upper limbs have less endurance fibres \rightarrow fatigue earlier \rightarrow more oxygen needed.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Q5. Nutrients for ligament healing?

→ Vitamin C (for collagen formation) and Copper (for cross-linking fibres)

☐ 6. Key Takeaways

- Physiology + Biochemistry are not separate—they work together in every treatment plan.
- As a physiotherapist, your tools are movement, breathing, posture, and nutrition.
- Use **structured thinking**: Identify the system \rightarrow understand the mechanism \rightarrow choose the right intervention.

Part 2: Assessment & Diagnostic Techniques for Physiotherapists

☐ 1. Learning Objectives - Explained

By completing this section, you'll learn how to:

1. Select Suitable Lab and Bedside Tests

You'll be trained to **choose the right test** based on the patient's condition. For example:

- Is it a lung problem? → Use spirometry or ABG.
- Suspect heart issue? → ECG, BP, or echocardiography.
- Weak muscles? → CK or DEXA scan.

[] You will **not need to do every test for every patient**, but pick what is relevant for physiotherapy.

2. Understand Test Procedures and Ranges

You must know:

- How each test works (basic principle)
- How to handle samples (e.g., ABG needs arterial blood + heparin)
- What's a normal range (e.g., blood pressure or blood sugar)

This lets you spot what's wrong quickly.

3. Interpret Results for Therapy

Once you have the report:

- Should you **start**, **pause**, **change**, or **stop** your treatment?
- Do you need to add oxygen? Reduce exercise? Refer to physician?

4. Identify Red Flags

Some test patterns mean emergency:

Very high BP or low SpO₂ → stop immediately

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

• Signs of internal bleeding or infection → refer urgently

□ 2. Core Diagnostic Techniques - System-wise Table

System	Test / Tool	Principle	Normal Range	Physiotherapy Meaning
Cardiovascular	ECG	Surface electrodes detect electrical signals from heart.	HR 60-100 bpm, PR 0.12-0.20 sec	If ST elevation \geq 2 mm \rightarrow STOP session. QTc $>$ 0.47 \rightarrow avoid electrical modalities.
	Echocardiography	Ultrasound reflects off valves & walls to measure EF.	EF ≥ 55%	If EF < 40%, start with light exercise at 40-50% HRR.
	Blood Pressure	Uses cuff (manual/auto).	≤120/80 mmHg	If SBP > 220 or DBP > 110, stop resistance training.
Respiratory	Spirometry	Measures lung function using forced breath.	FEV ₁ /FVC ≥ 0.70	Obstruction <0.70 → use breathing retraining; FEV ₁ <50% → low-intensity only.
	Pulse Oximetry	Uses red/infrared light to measure oxygen in blood.	≥94% at rest	COPD goal = $88-92\%$; pause therapy if $SpO_2 < 85\%$.
	ABG	Blood test for pH, O ₂ , CO ₂ (from artery).	pH 7.35-7.45; PaO ₂ > 80	pH < 7.30 or PaCO ₂ > $60 \rightarrow$ delay intense therapy.
Muscle & Bone	CK (Creatine Kinase)	Measures muscle damage enzyme.	Male: 40-200 U/L; Female: 20-180	>5× baseline → reduce eccentric exercise.
	DXA Scan	Low-dose X-ray to assess bone density.	T-score ≥ -1.0 normal	$T \le -2.5 \rightarrow \text{start with low-impact, balance exercises.}$
Metabolic / Endocrine	Blood Glucose	Glucose strip from finger.	70-100 fasting	>250 post-meal or <70 pre- exercise → modify carbs/insulin.
	HbA1c	Shows 3-month sugar control.	<5.7% normal	If >8%, go slow with foot loading, watch for ulcers.
	Lipid Panel	Measures LDL, HDL, etc.	LDL < 100; HDL > 40 (M) / >50 (F)	LDL >190 → monitor closely during cardiac rehab.
Inflammation & Recovery	CRP / ESR	Markers of infection/inflammation.	CRP < 5 mg/L	>10 with joint pain \rightarrow check for hidden infection.
	Vitamin D	Measures 25-OH Vit D in blood.	>30 ng/mL	<20 → supplement before doing weight training.

 $[\]hfill \Box$ Tip: All lab results should be matched with symptoms and functional assessments.

☐ 3. Linking Tests with Therapy Decisions

☐ Readiness & Safety Screens

- ECG: E.g., if PR interval is prolonged (0.22s), but heart rhythm is normal → low-level mobilisation is safe.
- **BP & SpO**₂: If SpO₂ drops during stairs, add rest breaks or oxygen support.

☐ When to Progress

- CK and soreness are mild → can increase exercise load.
- FEV₁ improves → increase resistance in inspiratory training device.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

☐ Red Flags: When to Stop

- New Atrial Fibrillation on monitor
- Metabolic Acidosis (ABG: pH < 7.30, HCO₃⁻ < 18)
- Orthostatic Hypotension: BP drops >20 mmHg with fainting

☐ Recovery & Nutrition Decisions

- Low **Albumin** (<**3.5 g**/**dL**) = poor wound healing \rightarrow consult dietitian.
- Low Iron/Ferritin (<30 ng/mL) = weak oxygen delivery → delay aerobic sessions.

☐ 4. Practical Tips for Physiotherapists

- CK peak: Wait 24 hrs after heavy eccentric session to measure accurately.
- ABG position: Patient should sit upright for 5 minutes before drawing blood.
- **BP Cuff**: Wrong size → false readings. Cuff should cover 40% of upper arm.
- Don't react to one value: Look at trend. A single borderline troponin doesn't stop therapy—but a rising trend does.

☐ 5. Case-Based Mini Interpretations

ScenarioMeaningActionPost-Stroke: $ABG \rightarrow PaCO_2$ 30, pH 7.48 Respiratory alkalosisTeach paced breathing, add speaking valveRunner + Shin Pain: Vit D = 18 ng/mL Vit D deficient, Ca normalAdd 2000 IU/day D3, continue pool rehab

ICU Patient: CK = 6000, fever 40°C Risk of muscle breakdown (rhabdomyolysis) Delay rehab; start fluid therapy

☐ 6. Self-Check Quiz (with Explanations)

- 1. Which pattern shows FEV₁/FVC > 0.8 + reduced FVC?
 - → **Restrictive**. These patients breathe rapidly and shallowly. Use small-volume interval training.
- 2. CK = 1100 U/L, 48 hr post-exercise, no symptoms. Safe to progress?
 - \rightarrow No. >5× normal or >1000 U/L = **deload**, rest, add recovery strategies.
- 3. ABG in Cheyne-Stokes (CHF)?
 - → **Hypocapnia (low CO₂)** → Respiratory alkalosis
- 4. Why check INR before chest percussion?
 - \rightarrow INR > 2.5 = **risk of bleeding** from mechanical techniques.
- 5. Blood tests for muscle recovery readiness?
 - \rightarrow **Albumin** ≥ 3.5 g/dL (nutrition)
 - → **Testosterone or IGF-1** (anabolic hormones)

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

☐ 7. Key Take-Home Points

- Lab data isn't just for doctors. As a physiotherapist, you use it to guide movement, breathing, posture, and recovery.
- Think in systems: cardio, respiratory, muscle, metabolic—every test tells you how to modify therapy.
- Always match lab results with clinical signs and functional ability.

Part 3: Practical Labs & Hands-On Exercises

This section gives you **practical experience** in understanding how physiology and biochemistry connect with real-life physiotherapy applications. Each lab simulates a clinical condition or response, and you will *observe, measure, interpret,* and *act like a clinician*. Let's walk through it step by step.

□ Overview of Practical Labs

Lab No.	Title & Systems	What You'll Learn	Safety Alerts
1	Finger-stick Glucose & Lactate Test	How carbs and lactate behave during exercise	Use sterile lancets; no test for patients with bleeding disorders
2	Serum CK & Muscle Soreness	How to track muscle damage after strength training	Use clean venepuncture or dried spot cards; infection control
3	Spirometry & Talking Test	Assess lung function and ventilatory threshold	Don't test patients with unresolved pneumothorax
4	Sub-max Cardio Test	Estimate aerobic fitness using HR and $\ensuremath{\text{VO}_2}$	Watch out for heart/orthopedic risks
5	EMG & Handgrip Fatigue	Measure muscle activity and fatigue pattern	Clean skin; avoid electrical interference
6	Salivary α-Amylase Stress Response	Measure autonomic stress biomarker	No food/gum before test; biohazard safety
7	Urinalysis Before/After Exercise	Understand hydration and kidney response	Use privacy screens; dispose samples properly
8	Indirect Calorimetry (optional)	Track oxygen use and fuel preference	Disinfect mask, monitor CO_2 levels, HEPA filter use

☐ Example Explained: Lab 1 - Finger-stick Glucose & Lactate During Cycling

Goal: Understand how energy substrates (glucose & lactate) change with rising intensity of exercise.

What you'll need:

- Glucometer with strips
- Handheld lactate analyzer
- Cycle ergometer (stationary bike)
- Alcohol swabs and lancets
- RPE (Rating of Perceived Exertion) scale
- Sharps disposal box
- Data sheet for logging results

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

□ Procedure:

Step What to Do What to Record

Warm-up Pedal at 25 watts for 3 minutes Heart rate (HR), RPE

Exercise Increase resistance by 25 watts every 2 min until RPE = 15 At each stage: HR, BP, Blood glucose, Blood

lactate

Cool-down Pedal slowly for 5 mins

Lactate after 5 minutes

□ Data Interpretation:

or $SpO_2 < 90\%$

- Lactate Graph A sharp rise indicates the lactate threshold (body shifting from aerobic to anaerobic metabolism).
- 2. Blood Glucose May dip slightly due to muscle uptake.
- 3. HR-Work Plot Should be linear in fit individuals.

☐ Clinical Relevance:

Imagine training a diabetic client—by observing when their blood sugar dips or lactate spikes, you can adjust workout intensity to avoid **hypoglycaemia** or fatigue.

2. Data Handling & Interpretation Tasks

Here's how you interpret real data:

Test Result	What It Means	Action You Take	
CK = 1250 U/L with soreness 6/10	Significant muscle micro-damage	Avoid more eccentric exercise till CK < 500 and DOMS \leq 3	
Spirometry = FEV ₁ /FVC 0.62; FEV ₁ = 48%	Moderate obstructive lung issue (like COPD)	Start Pursed-Lip Breathing (PLB) and Inspiratory Muscle Training (IMT)	
RER = 1.05 at 150 watts	Carbohydrate is dominant fuel	Advise pre-session carb intake; good for explosive power workouts	

☐ 3. Group Mini-Projects - Real Clinical Simulations

Project	Roles You Can Take	Final Outcome
Inflammation & Nutrition	ELISA Test Operator (CRP), Diet Tracker, Data Analyst	Make a poster showing how omega-3 supplements reduce inflammation
Hydration Science	Urine checker, Weight monitor, Sweating rate calculator	Create a hydration plan (e.g., drink 12 mL/kg/hour to maintain hydration)

☐ 4. Safety & Ethical Must-Dos

Before any hands-on session:

- Take informed consent and fill PAR-Q+ (Physical Activity Readiness Questionnaire).
- Follow universal precautions—gloves, masks, hand hygiene.
- Calibrate all devices before use. Note serial numbers.
- Supervisor with ACLS (Advanced Cardiac Life Support) must be available during cardio labs.
- **De-brief** participants: give results + suggest doctor visit if abnormal findings.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

☐ 5. Practical Self-Check Quiz (With Answers)

- 1. What two values are needed to convert oxygen usage to calories burned?
 - → RER (Respiratory Exchange Ratio) and energy equivalent per liter of oxygen at that RER
- 2. Why use RMS for EMG fatigue study?
 - → It gives a *clean, averaged signal over time*, unlike raw EMG which fluctuates too much.
- 3. What can falsely increase salivary amylase at rest?
 - → Caffeine, chewing gum, citric lozenges.
- 4. Lab precaution to prevent haemolysis during CK testing?
 - → Use 21G needle, invert tube gently—no shaking!
- 5. Is urine SG = 1.030 always dehydration post-workout?
 - → False. It may be temporary from exercise → check body weight & urine color too.

☐ 6. Final Key Learnings

☐ Practical tests transform theory into reality—you actually **see how physiology behaves in a body under stress or exercise**.

☐ Always link what you measure to what you'll do:

- Glucose drop? → Adjust carbs.
- SpO₂ drop? → Add pacing or O₂.
- CK high? → Lower eccentric load.

[] Clean data starts with clean technique—sampling, calibration, consent, safety are just as important as knowledge.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.