Chapter 4. General Embryology

1 Learning Objectives

On completing this chapter, students will be able to ...

- 1. Outline the timeline of early human development from gametogenesis to week 8.
- 2. **Describe key processes**—fertilisation, cleavage, blastocyst formation, implantation, gastrulation and embryonic folding.
- 3. Name the three primary germ-layers and at least three musculoskeletal or nervous derivatives of each.
- 4. **Explain how errors in early development lead to common congenital anomalies** (e.g., neural-tube defects, limb-bud malformations) that influence physiotherapy management.
- 5. Apply embryological concepts to neonatal, paediatric and lifelong rehabilitation scenarios.

2 Developmental Timeline (Weeks 0 - 8)

Stage	Post-Fertilisation Period	Key Events	Clinical / PT Relevance
Gametogenesis	Before week 0	Oogenesis & spermatogenesis; meiosis yields haploid gametes	Maternal age ↑ → meiotic errors → trisomies → developmental delay & hypotonia requiring early-intervention PT
Fertilisation	Day 0	Sperm penetrates zona pellucida in ampulla of uterine tube → zygote (46 XX/XY)	Determines genetic sex; X-linked disorders (e.g., DMD) shape future PT plans
Cleavage	Day 1-3	Rapid mitoses → morula (16 cells)	High metabolic demand—vulnerable to teratogens
Blastocyst	Day 4-5	Inner cell mass (embryoblast) & trophoblast; zona sheds	Trophoblastic invasion issues ↔ placenta previa → prematurity (NICU physiotherapy)
Implantation	Day 6-10	Syncytiotrophoblast embeds in endometrium; hCG secreted	Faulty implantation → ectopic pregnancy; high clinical importance but minimal PT role
Bilaminar disc	Week 2	Epiblast + hypoblast; amniotic & chorionic cavities form	Amniotic fluid dynamics later influence limb development
Gastrulation	Week 3	Primitive streak → ectoderm, mesoderm, endoderm	Mis-closure of neural tube → spina bifida (requires life-long physio)
Neurulation	Week 3-4	Neural plate folds → neural tube & neural crest	Cerebral palsy risk 1 with brain malformations
Somite segmentation	Week 3-5	Paraxial mesoderm → 42-44 pairs somites (sclerotome, dermomyotome)	Dictates myotome/dermatome maps used in neuro-assessment
Embryonic folding	Week 4	Converts flat disc → cylindrical embryo; incorporates yolk sac	Ventral wall defects (omphalocele) affect post-surgical PT
Limb-bud formation	Week 4-5	Apical ectodermal ridge (AER) drives proximodistal growth	Amelia/phocomelia influence adaptive equipment prescription
Organogenesis	Week 4-8	All major organs established	Teratogen susceptibility → cardiac defects (post-op cardio-pulmonary rehab)

3 Germ Layers & Selected Derivatives

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

AND MANAGE AND STREET STREET
¥ 🕮 🎊 🕏
V 5 1990
Ayurved Bharati
7

Germ-Layer	Musculoskeletal / Neuro Derivatives	Other Major Derivatives
Ectoderm	Neural tube → brain, spinal cord ; Neural crest → peripheral nerves, Schwann cells ; Surface ectoderm → epidermis	Lens, inner ear, enamel
Mesoderm	Paraxial → skeletal muscles, axial skeleton; Lateral plate → limb bones, cardiac & smooth muscle; Intermediate → urogenital organs	Dermis, blood vessels
Endoderm	— (no direct MSK structures)	Epithelia of GI & respiratory tracts, liver, pancreas, bladder

PT Pearl: Recognising that skeletal muscle and vertebrae share the same somite origin helps explain cooccurrence of congenital muscular torticollis and cervical vertebral anomalies.

4 Common Developmental Errors & Physiotherapy Implications

Anomaly	Developmental Mis-step	Prevalence	Key PT Considerations
Neural-tube defects (spina bifida, anencephaly)	Failed neural-fold closure (wk 3-4)	1:1 000 births	Wheelchair seating, contracture prevention, bladder training
Congenital limb deficiencies Disrupted AER signalling		6:10 000	Prosthetic training, unilateral gait adaptations
Congenital muscular torticollis	Intrauterine positional or SCM fibrosis (later foetal period)	0.4 %	Passive stretch, caregiver education
Ventricular septal defect	Faulty cardiac septation (wk 5-6)	Most common CHD	Post-surgical chest physio, endurance management
Clubfoot (Talipes equinovarus)	Abnormal limb positioning / neuromuscular imbalance	1:1000	Ponseti bracing compliance, strengthening

5 Embryology ↔ Clinical Reasoning Flowchart

(Adapt the logic chain for other anomalies during case discussions.)

6 Self-Check Quiz

- 1. Which embryonic week is most sensitive to teratogen-induced cardiac defects?
- 2. Name the signalling molecule secreted by the notochord that patterns the neural tube.
- 3. True/False: The diaphragm develops solely from septum transversum mesoderm.
- 4. Match the germ-layer with one derivative relevant to PT:

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

a) Mesoderm — ; b) Ectoderm —	; c) Endoderm —
-------------------------------	-----------------

5. Explain how somite segmentation is reflected in adult physiotherapy assessment charts.

Answers

- 1. Weeks 3-6 (organogenesis, esp. wk 5-6 for heart).
- 2. Sonic Hedgehog (SHH).
- 3. False also pleuroperitoneal membranes, dorsal mesentery of oesophagus, muscular ingrowth from body wall.
- 4. a) Quadriceps femoris muscle, b) Peripheral nerve, c) Respiratory epithelium.
- 5. Dermatome & myotome maps correspond to original somite levels, guiding neuro-screens.

7 Suggested Lab / Tutorial Activities

- 1. **3-D Embryo Atlas Walkthrough:** Use virtual reality or apps (e.g., 3D Embryo) to visualise folding and limb-bud outgrowth.
- 2. **Neural-Tube Defect Simulation:** Apply orthoses to a mannequin with simulated L4 lesion; practise transfer techniques.
- 3. **Teratogen Debate:** Small groups present cases on alcohol vs. valproate exposure and long-term rehab outlook.

8 Key Take-Home Points

- Early embryonic events dictate the **anatomical baseline** upon which physiotherapists build interventions across the lifespan.
- Understanding germ-layer origins and critical periods sharpens clinical reasoning for congenital and paediatric
 cases.
- Congenital anomalies often present **multi-system challenges**—effective PT integrates musculoskeletal, neurological and cardiopulmonary principles.

© Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.