

Chapter 2. Cellular Physiology

Part 1 | Cell Structure & Function

1 Learning Objectives

After this section you will be able to ...

- 1. Sketch or label a typical human cell and name the function of every major organelle.
- 2. Explain how mitochondrial, endoplasmic-reticular, and cytoskeletal functions support movement, repair and energy supply—key pillars of physiotherapy.
- 3. **Summarise the biochemical pathways of cellular metabolism** (glycolysis → TCA → ETC) and relate ATP yield to exercise intensity.
- 4. **Describe the steps of mitosis and meiosis**, linking cell-cycle control to growth, healing and oncological precautions in rehabilitation.

2 The Cell: "Functional Unit of Life - Functional Unit of Rehab"

Organelle	Structure	Core Function	PT-Centred Clinical Angle
Plasma Membrane	Phospholipid bilayer with cholesterol, proteins & glycocalyx	Selective barrier; houses receptors & ion channels	NMES depolarises membrane; fluid mosaic disrupted in burn injuries—manage edema carefully
Nucleus	Double membrane with nuclear pores; contains chromatin, nucleolus	Stores DNA; transcription & ribosome assembly	Hypertrophy training triggers gene transcription via mechanotransduction
Mitochondria	Double membrane; cristae; own mtDNA	Aerobic ATP (OXPHOS), β- oxidation, apoptosis signalling	Increased mitochondrial density after endurance training → improved VO₂max
Rough ER	Flattened sacs studded with ribosomes	Synthesise & fold secretory/ membrane proteins	Collagen type I synthesis for tendon repair requires adequate AA & vit C
Smooth ER	Tubular network; no ribosomes	Lipid synthesis; Ca ²⁺ store (muscle SR)	Ca ²⁺ release drives cross-bridge cycling; SR leaks in fatigue
Golgi Apparatus	Stacked cisternae	Post-translational modification & sorting	Defective glycosylation weakens cartilage proteoglycans—OA risk
Lysosomes	Single membrane vesicles with acid hydrolases	Intracellular digestion, autophagy	Eccentric-exercise micro-damage cleared via autophagy—timing recovery days
Peroxisomes	Oxidative enzymes (catalase)	Very-long-chain FA oxidation; ROS detox	Oxidative stress in chronic inflammation—antioxidant nutrition advice
Cytoskeleton	Microfilaments (actin), microtubules, intermediate filaments	Shape, transport, contraction	Actin-myosin interaction = muscle; microtubule disruption → neuropathies (vincristine)
Centrosome	Pair of centrioles + pericentriolar matrix	Spindle formation in mitosis	Rapid healing tissues (skin)—proliferation phase hinges on intact centrosomes

3 Cellular Metabolism - ATP Factory Tour

1. Glycolysis (cytosol)

Glucose → 2 Pyruvate + 2 ATP + 2 NADH (anaerobic or aerobic).

• Physiotherapy link*: HIIT relies on rapid glycolysis; lactate threshold training delays fatigue.

2. Pyruvate Dehydrogenase Complex (mitochondrial matrix)

Pyruvate → Acetyl-CoA + NADH + CO2

• Thiamine-dependent*: patients with alcoholism—monitor for weakness.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

3. TCA / Krebs Cycle

Acetyl-CoA → 3 NADH + FADH2 + GTP + 2 CO2

• After 2 min of exercise*, this becomes core ATP provider.

4. Electron Transport Chain & Oxidative Phosphorylation

NADH / FADH₂ donate $e^- \rightarrow O_2$, pumping H⁺ \rightarrow ATP synthase yields ~ 34 ATP.

• Clinical: Hypoxia ($SpO_2 < 90$ %) impairs ETC – modify exercise intensity.

5. Anaerobic Fate

NADH + Pyruvate → Lactate via LDH—allows glycolysis to continue; lactate recycled (Cori cycle).

• Post-exercise active recovery clears lactate via oxidation in slow-twitch fibres.

4 Cell Division

Phase	Key Events	Physiotherapy Significance
Interphas	e G ₁ (growth), S (DNA replication), G ₂ (prep)	Wound-healing fibroblasts proliferate—adequate protein & circulation essential
Mitosis	Prophase (chromatin condense), Metaphase (align), Anaphase (sister chromatids separate), Telophase (nuclear re-form) → Cytokinesis	Skin, GI tract & blood cells renew rapidly—consider when scheduling modalities (e.g., ultrasound) after radiotherapy
Meiosis	Two nuclear divisions→ gametes (haploid)	Genetic disorders (e.g., DMD) explained by meiotic errors; informs paediatric counselling

Cell-cycle checkpoints (p53, cyclins) are disrupted in cancer → PT must adjust intensity and infection control.

5 Integration Example - Tendon Healing Timeline

- 1. Inflammation (Day 0-3): Neutrophils & macrophages—lysosomal enzymes remove debris.
- 2. **Proliferation (Day 3-21):** Fibroblasts (RER ↑) synthesise type III collagen → converted to type I in maturation; vitamin C-dependent hydroxylation in rough ER & Golgi.
- 3. **Maturation (Weeks 3-52):** Cross-linking (lysyl oxidase) strengthens fibrils; progressive mechanical loading aligns fibres (Wolff's law at cellular scale).

6 Self-Check Quiz (answers below)

- 1. Which organelle is expanded in hypertrophied muscle fibres to meet increased ATP demand?
- 2. State the net ATP yield from one glucose molecule under aerobic conditions.
- 3. During which mitotic phase do centromeres split?
- 4. Name the enzyme that cross-links collagen and the cofactor it requires.
- 5. Why does mitochondrial DNA mutate faster than nuclear DNA, and what implication does this have for ageing muscle?

Answers

- 1. Mitochondria.
- 2. Approximately **36-38 ATP** (depending on shuttle pathway).
- 3. Anaphase.
- 4. Lysyl oxidase; requires copper.
- 5. Mitochondria reside in an ROS-rich environment and lack protective histones → mutations accumulate, reducing oxidative capacity and contributing to sarcopenia.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

7 Practical / Lab Suggestions

Lab Activity

Histology slide session Identify mitochondria density differences in red vs white muscle fibres. Metabolic pathway mapping Group builds colour-coded wall chart of glycolysis \rightarrow TCA \rightarrow ETC with ATP tally.

Cell-cycle bingo

Match chemotherapeutic agents to affected cell-cycle checkpoints to understand onco-PT

precautions.

8 Key Take-Home Messages

- Organelles cooperate like a factory; damage or adaptation in any compartment directly impacts rehabilitation outcomes.
- ATP supply pathways dictate exercise tolerance—understand where each fits on the intensity-time continuum.
- Cell division underlies healing and growth; PT must match load to the tissue's biological timetable.

Part 2 | Membrane-Transport Mechanisms

1 Learning Objectives

- 1. **Differentiate passive from active membrane transport** and cite one physiotherapy-relevant example of each.
- 2. Describe the driving forces (concentration, electrical and hydrostatic gradients) behind diffusion and osmosis.
- 3. **Explain primary- and secondary-active transport,** naming the key pumps that maintain excitability of nerves and muscles.
- 4. **Outline vesicular transport (endocytosis / exocytosis)** and relate it to tissue repair, inflammation and drug delivery in rehabilitation.

2 Passive Transport

Mode	Driver	Pore / Carrier?	Physiological Example	PT Significance
Simple diffusion	ΔC or ΔE	No	O ₂ & CO ₂ across alveolar membrane	Teach diaphragmatic breathing to optimise O₂ diffusion (↑ alveolar surface, ↓ thickness)
Facilitated diffusion	ΔC	Carrier (GLUT-4) or channel (ion)	Glucose uptake into myocytes via insulin- regulated GLUT-4	Strength training ↑ GLUT-4 density → better glycaemic control in T2DM clients
Osmosis	ΔΠ (osmotic pressure)	Aquaporins	Water shift in edema	Elevation + compression stockings create hydrostatic counter-pressure

Greater surface (A) or smaller distance (Δx) boosts flux—reasoning behind incentive-spirometry post-surgery.

3 Active Transport

3.1 Primary-Active (ATP-driven)

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Pump	Stoichiometry	Function	Rehab Connection
Na+/K+-ATPase	3 Na+ out : 2 K+ in + ATP	Maintains resting membrane potential (-70 mV)	Adequate K ⁺ intake critical for avoiding arrhythmia during electrotherapy
Ca ²⁺ -ATPase (SERCA)	2 Ca ²⁺ in SR/ER per ATP	Muscle relaxation; replenishes SR	Spasticity drugs (dantrolene) modulate Ca ²⁺ release—affects tone management
H+/K+-ATPase	Gastric acid secretion	Not directly PT relevant but explains reflux precautions in prone positioning	

3.2 Secondary-Active (Coupled-Carrier)

- **Sodium-Glucose Co-Transporter (SGLT-1/2):** Glucose reabsorption in gut & kidney—rehydration drinks exploit Na⁺-glucose co-transport.
- Na+/Ca²+ Exchanger (NCX): Removes Ca²+ post-contraction—digitalis inhibits Na+/K+-ATPase ⇒ ↑ intracellular Ca²+, ↑ inotropy; PT monitors HR in cardiac patients.

4 Vesicular Transport (Bulk)

Process	Mechanism	Example	Clinical Angle
Endocytosis	Plasma-membrane invagination	Receptor-mediated LDL uptake	Statin-treated clients: monitor myalgia due to altered lipid endocytosis
• Phagocytosis	Actin-driven engulfing of pathogens	Neutrophil action in wound	Adequate circulation & movement speed healing
• Pinocytosis	"Cell drinking" small vesicles	Synovial A-cells sampling fluid	Joint mobilisation may aid nutrient exchange
Exocytosis	Vesicle fusion (SNARE proteins)	ACh release at NMJ	Botulinum toxin blocks SNARE \rightarrow focal spasticity management

5 Integrated Clinical Examples

Pathology	Transport Defect	Manifestation	PT Strategy
Cystic Fibrosis	Mutant CFTR CI- channel (facilitated diffusion)	Thick mucus, ↓ ciliary clearance	Percussion, PEP devices, Autogenic drainage
Exercise-Associated Hyponatremia	Excessive water intake, osmosis shifts	Confusion, seizures	Educate on isotonic hydration; monitor weight change ±3 %
Edema in CHF	↑ Venous hydrostatic P > oncotic P	Peripheral swelling	Elevation, calf-pump activation, intermittent pneumatic compression

6 Self-Check Quiz (answers below)

- 1. Why does simple diffusion rate plateau with membrane thickness but facilitated diffusion shows saturation?
- 2. State the effect of ouabain on resting membrane potential and muscle contractility.
- 3. Which vesicular transport process is up-regulated during macrophage activity in acute inflammation?
- 4. Explain how Na+/glucose co-transport enables oral rehydration therapy.
- 5. During NMES, why is extracellular K+ concentration critical for avoiding fatigue?

Answers

1. Simple diffusion is limited only by ΔC and distance; carriers in facilitated diffusion become saturated at high

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

- substrate concentration (Vmax).
- 2. Ouabain blocks Na+/K+-ATPase → depolarises cell (↑ Na+ inside); in heart, raises intracellular Ca²+ via NCX, increasing contractility.
- 3. **Phagocytosis**—a form of endocytosis mediated by actin.
- 4. Na+ pumped out by basolateral Na+/K+-ATPase keeps luminal [Na+] low; SGLT couples **Na+ influx with glucose**, pulling water osmotically into enterocytes, hydrating the body.
- 5. High extracellular K⁺ diminishes K⁺ gradient, delaying repolarisation → impulse failure. Adequate K⁺ prevents rapid fatigue during repetitive stimulation.

7 Key Take-Home Points

- **Passive transport** relies on gradients; **active transport** spends ATP or stored ion energy to move substances against gradients.
- Clinicians manipulate these mechanisms—breathing control, hydration, NMES, compression—to optimise
 patient outcomes.
- Understanding membrane dynamics prevents adverse events (e.g., hyponatremia, hyperkalemia) and explains therapeutic effects (muscle relaxation, airway clearance).

Part 3 | Cell Communication & Signalling

(focus: hormonal signalling & receptor types)

1 • Learning Objectives

After this part you will be able to ...

- 1. **Outline the basic routes of inter-cell communication** (autocrine, paracrine, endocrine, neurocrine, juxtacrine).
- 2. **Explain endocrine (hormonal) signalling** from hormone synthesis to target-cell response, including feedback loops.
- 3. **Classify receptors into four major families**—ion-channel, G-protein-coupled, enzyme-linked, intracellular—and match each to representative ligands and second-messenger systems.
- 4. **Relate signalling concepts to physiotherapy practice**, such as exercise-induced hormonal changes, pharmacological precautions, and tissue-healing cascades.

2 • Communication Pathways Cheat-Sheet

Mode	Range	Signal Molecule	Speed / Duration	Rehab Relevance
Autocrine	Same cell	IL-6 from exercising muscle (myokine)	Fast / short	Explains local hypertrophy signalling during resistance training
Paracrine	Neighbour cells	Nitric oxide from endothelium	Fast / brief	Warm-up ↑ NO → vasodilation, ↓ vascular resistance
Endocrine (Hormonal)	Bloodstream to distant organs	Insulin, cortisol, GH	Slower / long (min → hrs)	Glycaemic control, stress response to exercise
Neurocrine	Synapse	Acetylcholine, NA	Milliseconds	NMES & spasticity management
Juxtacrine	Contact-dependent	Integrins, notch ligands	Continuous	Cell adhesion in wound healing

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

3 • Hormonal Signalling - From Gland to Effect

1. Synthesis & Storage

Peptide hormones (e.g., insulin) synthesised on RER, stored in vesicles; *Steroid hormones* (e.g., cortisol) synthesised from cholesterol on demand.

2. Release & Transport

Stimuli (neural, humoral, hormonal) trigger exocytosis or diffusion. Carriers bind lipophilic hormones (cortisol-CBG) \rightarrow longer half-life.

3. Reception

Hormone binds specific receptor (cell-surface or intracellular).

4. Signal Transduction & Amplification

Second messengers (cAMP, IP₃-Ca²⁺, cGMP) or direct gene activation.

5. Physiological Response

Metabolic change, membrane transport, gene transcription, mitosis.

6. Feedback Regulation

Negative feedback is most common (\uparrow cortisol $\rightarrow \downarrow$ ACTH). Positive feedback rare (oxytocin in labour).

Example	Trigger	Effector Pathway	PT Angle
Insulin	↑ Blood glucose	Insulin-R (RTK) → GLUT-4 translocation	Monitor BG before/after exercise; exercise ↑ GLUT-4 independent of insulin
Parathyroid Hormone	↓ Serum Ca²+	cAMP pathway ↑ osteoclast activity	Weight-bearing exercise stimulates bone, synergising with PTH
Catecholamines	Sympathetic drive	β_1 heart (Gs \rightarrow cAMP \uparrow HR), β_2 bronchi (Gs \rightarrow bronchodilation)	Beta-blocker blunts HR rise; adjust aerobic intensity using RPE

4 • Receptor Families & Key Features

Family	Structure	Typical Ligands	Transduction	Time-course	Clinical / PT Notes
Ligand-Gated Ion Channels (Ionotropic)	5-subunit pore	ACh (nicotinic), GABA, ATP	Opens ion channel directly	Milliseconds	Botulinum toxin blocks ACh release → ↓ spasms
G-Protein-Coupled Receptors (GPCR)	7-TM helix + Gαβγ	Adrenaline, glucagon, endorphins	Gs/Gi → cAMP; Gq → IP₃/Ca²+	Seconds	β_2 agonist inhaler pre- exercise \uparrow FEV $_1$ in asthma
Enzyme-Linked Receptors (Receptor Tyrosine Kinase, Ser/Thr, Guanylyl)	Single TM; intrinsic catalytic domain	Insulin, IGF-1, growth factors	Autophosphorylation → MAPK, PI3K	Minutes-hours	IGF-1 surge after resistance training supports hypertrophy
Intracellular (Nuclear) Receptors	Cytosolic / nuclear	Steroids, thyroid hormone, vitamin D	Hormone-receptor binds DNA (HRE)	Hours-days	Glucocorticoids delay collagen synthesis; dose-timing affects rehab

Second-Messenger Mnemonic "CAMP-PI3-DAG-Ca":

cAMP, PI3K-Akt, DAG/PKC, Ca²⁺/calmodulin—know which pathways your patient's drugs or diseases influence.

5 • Applied Mini-Scenarios

Scenario	Underlying Signalling	PT Adjustment
Post-menopausal Osteoporosis - low oestrogen	↓ Oestrogen-ER gene activation \rightarrow ↑ osteoclast	WBV, resistance train to mechanical-load bones; ensure vit D

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Scenario	Underlying Signalling	PT Adjustment
Delayed-onset Muscle Soreness	IL-6 & IGF-1 autocrine signalling from damaged fibres	Schedule lighter session 48-72 h later; adequate protein
Parkinson's Bradykinesia	Dopamine loss at D1/D2 GPCR	Cue external pacing; monitor for on-off medication periods
β-Blocker Use in Cardiac Rehab	Blocks β_1 GPCR $\rightarrow \downarrow$ cAMP $\rightarrow \downarrow$ HR	Use Borg RPE 11-13 instead of HR zone

6 • Self-Check Quiz (answers below)

- 1. Which receptor type is directly linked to rapid synaptic transmission in skeletal muscle?
- 2. Name the second messenger that increases intracellular Ca2+ via IP3-mediated SR release.
- 3. Why can long-term glucocorticoid therapy impede tendon healing?
- 4. Exercise induces translocation of which glucose transporter to the sarcolemma?
- 5. Describe one positive-feedback hormonal loop relevant to childbirth.

Answers

- 1. Nicotinic acetylcholine receptor (ligand-gated ion channel).
- 2. Inositol-1,4,5-trisphosphate (IP₃).
- 3. Steroids bind intracellular GR → down-regulate collagen gene expression and inhibit fibroblast proliferation.
- 4. GLUT-4.
- Uterine stretch → hypothalamus → posterior pituitary releases oxytocin, which intensifies contractions and further stretch.

7 • Key Take-Home Points

- Hormones are long-range messengers; receptors are the language translators.
- Understanding receptor families lets PTs predict **drug interactions**, **exercise responses**, **and healing timelines**.
- Exercise is a potent endocrine stimulus—myokines, catecholamines, IGF-1—harness them through programme design.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.