

# Chapter 10. Cardiovascular System

## Part 1 | Heart Anatomy & Function

## 1 Learning Objectives

After completing this part you should be able to ...

- 1. **Identify the external and internal anatomical landmarks** of the heart, including all four chambers, valves, and the course of the great vessels.
- 2. **Trace the flow of blood through the heart during a single cardiac cycle**, correlating valve movements with the phases of systole and diastole.
- 3. **Explain the mechanical and electrical events** that create the normal heart sounds (S<sub>1</sub>, S<sub>2</sub>) and the waveforms of the Wiggers diagram.
- 4. **Relate basic cardiac anatomy and physiology to physiotherapy practice**, such as monitoring heart sounds, pulse, and responses to exercise.

#### 2 Gross Structure of the Heart

| Aspect        | Details                                                                                                                                                                                                                                                                                      | Clinical / PT Note                                                           |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Position      | Oblique in mediastinum; ¾ left of midline; apex at 5 <sup>th</sup> left intercostal space, mid-clavicular line                                                                                                                                                                               | Apex beat palpation during vitals                                            |
| Layers        | Fibrous pericardium $\rightarrow$ parietal serous $\rightarrow$ pericardial cavity (15 mL fluid) $\rightarrow$ visceral serous (epicardium) $\rightarrow$ myocardium $\rightarrow$ endocardium                                                                                               | Pericarditis pain ↑ with supine; pericardial effusion → muted heart sounds   |
| Chambers      | <ul> <li>Right Atrium (RA) - receives venous blood via SVC, IVC, coronary sinus</li> <li>Right Ventricle (RV) - pumps to pulmonary trunk</li> <li>Left Atrium (LA) - receives oxygenated blood via 4 pulmonary veins</li> <li>Left Ventricle (IV) - pumps to aorta; thickest wall</li> </ul> | LV hypertrophy palpable as laterally displaced apex in CHF                   |
| Valves        | Atrioventricular (AV): - Tricuspid (RA→RV) - Mitral/Bicuspid (LA→LV) Semilunar (SL): - Pulmonary (RV→pulmonary trunk) - Aortic (LV→aorta)                                                                                                                                                    | Auscultation sites: "APe To Man" (Aortic,<br>Pulmonary, Tricuspid, Mitral)   |
| Great Vessels | Aorta, Pulmonary trunk & arteries, Pulmonary veins, SVC, IVC                                                                                                                                                                                                                                 | Pulse sites: carotid, radial, dorsalis pedis correspond to arterial branches |

## **Valve Support Apparatus**

- Chordae tendineae anchor cusps to papillary muscles → prevent prolapse during ventricular systole.
- Dysfunction = murmur / regurgitation; PT screens for exercise intolerance.

## 3 Cardiac Cycle & Blood Flow

| Phase                                      | <b>Mechanical Event</b>                             | Valve Status              | Pressure Changes                          | Heart<br>Sounds |
|--------------------------------------------|-----------------------------------------------------|---------------------------|-------------------------------------------|-----------------|
| Atrial Systole ( $\approx 0.1 \text{ s}$ ) | Atria contract, topping-up ventricles (≈ 20 % fill) | AV open; SL<br>closed     | Atrial P 1 slightly                       | _               |
| Isovolumetric Ventricular<br>Systole       | Ventricles begin to contract – all valves closed    | AV snap shut → <b>S</b> 1 | Ventricular P rises sharply               | S1 ("lub")      |
| Ventricular Ejection (Rapid + Reduced)     | SL open; blood expelled                             | AV closed; SL<br>open     | LV P peaks at 120 mm<br>Hg; RV ~ 25 mm Hg | _               |

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.



| Phase                                              | <b>Mechanical Event</b>              | Valve Status                     | Pressure Changes                        | Heart<br>Sounds           |
|----------------------------------------------------|--------------------------------------|----------------------------------|-----------------------------------------|---------------------------|
| Isovolumetric Ventricular<br>Diastole              | Ventricles relax - all valves closed | SL close → <b>S</b> <sub>2</sub> | Ventricular P falls below atrial        | S <sub>2</sub> ("dub")    |
| Passive Ventricular Filling<br>(Rapid + Diastasis) | AV open; ventricles fill 80 %        | AV open; SL<br>closed            | Ventricular P low; atrial P just higher | Possible S₃ in youth / HF |

#### **Blood-Flow Path**

SVC/IVC  $\rightarrow$  RA  $\rightarrow$  Tricuspid  $\rightarrow$  RV  $\rightarrow$  Pulmonary valve  $\rightarrow$  Pulmonary arteries  $\rightarrow$  Lungs  $\rightarrow$  Pulmonary veins  $\rightarrow$  LA  $\rightarrow$  Mitral  $\rightarrow$  LV  $\rightarrow$  Aortic valve  $\rightarrow$  Aorta  $\rightarrow$  Systemic circulation

- Right heart = pulmonary pump Left heart = systemic pump
- Flow is **series** (pulmonary → systemic) but **pressure** differs: LV wall ~ 3× RV; vital for exercise prescription.

#### 4 Electrical Events & Mechanical Correlates (Wiggers Diagram Snapshot)

| ECG         | Mechanical Phase                                              | PT Significance                                                  |
|-------------|---------------------------------------------------------------|------------------------------------------------------------------|
| P wave      | Atrial depolarisation → Atrial systole                        | Atrial kick important in elderly; atrial fibrillation loses this |
| QRS complex | Ventricular depolarisation → Isovolumetric systole & ejection | Monitor for arrhythmia during graded exercise test               |
| T wave      | Ventricular repolarisation → Isovolumetric relaxation         | Tall, peaked T in hyper-kalaemia – exercise contraindication     |

## **5 Structure-Function-Clinical Correlations**

| <b>Anatomy Feature</b>                | <b>Functional Benefit</b>                        | PT Application                                                                      |
|---------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|
| Helical myocardial fibre orientation  | Torsional LV contraction ↑ ejection efficiency   | In MI, fibre loss $\downarrow$ stroke volume $\rightarrow$ adjust aerobic intensity |
| Mitral valve bicuspid design          | Withstands high LV pressure                      | Post-valve replacement: avoid sustained Valsalva (↑ afterload)                      |
| Coronary artery perfusion in diastole | Aortic recoil drives flow                        | ${\sf HR} > 140~{\sf bpm}$ shortens diastole – limit in CAD clients                 |
| Right ventricular thin wall           | Low-pressure pump to lungs, compliant to preload | Fluid overload in HFpEF manifests as peripheral oedema $\rightarrow$                |

#### 6 Self-Check Quiz (Answers below)

- 1. Which heart valves close at the onset of ventricular systole, and what heart sound is produced?
- 2. Trace the pathway of a red blood cell from the right atrium to the left subclavian artery.
- 3. Why is the left ventricular wall thicker than the right?
- 4. At what point in the cardiac cycle are all four valves closed, and what is the functional purpose of this phase?
- 5. Name the primary pacemaker of the heart and its normal intrinsic rate.
- 1. The tricuspid and mitral (AV) valves close, producing the first heart sound (S1).
- 2. RA → Tricuspid → RV → Pulmonary valve → Pulmonary arteries → Lungs → Pulmonary veins → LA → Mitral → LV → Aortic valve → Ascending aorta → Aortic arch → Left subclavian artery.
- 3. The LV must generate higher pressure (≈ 120 mm Hg) to propel blood through systemic circulation, requiring a thicker muscular wall.
- 4. **Isovolumetric contraction (early systole) and isovolumetric relaxation (early diastole)** these phases allow ventricular pressure to rise or fall rapidly without changing volume, ensuring unidirectional flow.

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.



5. **Sino-atrial (SA) node** – intrinsic rate  $\approx 60-100$  beats min<sup>-1</sup>.

#### 7 Suggested Lab Activities

Activity Skill Gained

Heart-sound Auscultation CircuitIdentify S1-S2 timing with radial pulse; recognise split S2, S3, murmurs3-D Heart Model DissectionTrace chambers, valves, coronary arteries; simulate valve openingPulse & Blood-Pressure LabCorrelate systolic/diastolic BP with cardiac cycle phases during posture changes

ECG & Wiggers Integration Workshop Map ECG to mechanical events using animated diagram

#### 8 Key Take-Home Points

- The heart's four-chamber, two-pump design ensures continuous pulmonary and systemic circulation.
- Valve timing governs unidirectional flow; auscultation detects dysfunction early.
- The cardiac cycle links electrical depolarisation → mechanical contraction → pressure changes → blood flow - a foundation for exercise physiology.
- Physiotherapists integrate heart anatomy & function when prescribing activity, monitoring vitals, and recognising red-flag cardiac signs.

# Part 2 | Blood Vessels & Circulation

## 1 Learning Objectives

At the end of this part you will be able to ...

- 1. **Differentiate the three principal blood-vessel types**—arteries, capillaries, veins—by wall structure, diameter, and functional role.
- 2. **Describe the hierarchical branching** from elastic artery → arteriole → capillary → venule → large vein, and explain how each segment regulates pressure and flow.
- 3. **Trace the complete systemic and pulmonary circuits**, noting pressure ranges, oxygenation changes, and major organ-specific "portal" deviations.
- 4. **Relate vascular physiology to physiotherapy practice**, such as orthostatic hypotension management, compression therapy for venous insufficiency, and warm-up effects on arterial compliance.

## 2 Histological & Functional Spectrum of Blood Vessels

| Level                                                               | Typical<br>Diameter | Tunica Media Features                                               | <b>Key Function</b>                                           | Clinical / PT Relevance                                                                  |
|---------------------------------------------------------------------|---------------------|---------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
| <b>Elastic arteries</b> (conducting) e.g.,<br>Aorta, Pulm. trunk    | 10-25 mm            | 40–70 elastic lamellae interlaced with smooth muscle                | Damp pressure oscillation ("Windkessel")                      | Aortic stiffness ↑ with age → higher systolic BP; aerobic exercise preserves compliance  |
| <b>Muscular arteries</b><br>(distributing) e.g.,<br>Radial, Femoral | 1-10 mm             | Thick smooth-muscle<br>layers; external elastic<br>lamina prominent | Direct regional blood flow via vasomotor tone                 | Palpation sites for pulse & BP;<br>spasm in PVD limits walking<br>distance               |
| <b>Arterioles</b> (resistance)                                      | 10-100 μm           | 1-2 layers smooth muscle                                            | Major determinant of<br>systemic vascular<br>resistance (SVR) | Warm-up induces vasodilation<br>↓ after-load; cold increases<br>tone—contra in Raynaud's |

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

# **AYURVED BHARATI®**

| Level                                                            | Typical<br>Diameter | Tunica Media Features                                    | Key Function                                               | Clinical / PT Relevance                                                                 |
|------------------------------------------------------------------|---------------------|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Capillaries                                                      | 5-10 μm             | Single endothelial layer<br>+ basal lamina               | Exchange of gases, nutrients, waste                        | Massage & active muscle pump ↑ capillary perfusion & lymph return                       |
| <b>Venules</b> (post-capillary → muscular)                       | 10 μm-1 mm          | Sparse muscle; pericytes                                 | Leukocyte migration; capacitance                           | Inflammation ↑ permeability → oedema; elevation and muscle activity assist clearance    |
| Medium & large<br>veins e.g., Great<br>saphenous, Venae<br>cavae | 1-30 mm             | Thin media, thick tunica externa; <b>valves</b> in limbs | Low-pressure return,<br>volume reservoir (> 60<br>% blood) | Calf-muscle pump;<br>compression stockings;<br>orthostatic intolerance post-<br>bedrest |

PT Pearl: Elastic arteries recoil during diastole, sustaining coronary perfusion; failure (arteriosclerosis) means care when prescribing high-intensity intervals in older clients.

## 3 Specialised Capillary Types

| Type        | Structure                                 | Location                                                | Functional Note                                                                           |
|-------------|-------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Continuous  | Tight junctions; intact basal lamina      | Muscle, skin, CNS (BBB)                                 | Transcytosis & pinocytosis limited; manual therapy cannot directly alter BBB permeability |
| Fenestrated | Pores with diaphragms                     | Endocrine glands,<br>intestines, kidneys<br>(glomeruli) | Facilitates filtration; hemodialysis PT accounts for fluid shifts                         |
| Sinusoidal  | Large gaps, discontinuous<br>basal lamina | Liver, spleen, bone<br>marrow                           | Allows cell passage; post-leukaemia mobilisation protocols monitor marrow perfusion       |

#### **4 Circulatory Circuits**

#### 4.1 Pulmonary Circulation (Low-Pressure, Oxygenation Circuit)

- 1. **RV** → **Pulmonary trunk** (25/8 mm Hg)
- 2. Pulmonary arteries → arterioles → **Pulmonary capillaries** (gas exchange)
- 3. Venules → Pulmonary veins (×4) → LA

Mean pressure ≈ 15 mm Hg; thin vascular walls allow recruitment during exercise.

PT Context: Supine cycle ergometry increases venous return; right-HF patients require upright positioning to avoid overload.

#### 4.2 Systemic Circulation (High-Pressure Delivery Circuit)

LV (120/8 mm Hg) → Aorta → Elastic ↓ Muscular arteries ↓ Arterioles (major pressure drop) ↓ Capillaries (exchange) ↓ Venules ↓ Veins ↓ Venae cavae → RA

Special sub-circuits

| Circuit        | Route                                                                                    | Why it Matters                                                                |
|----------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Hepatic Portal | Gut → Portal vein → Liver sinusoids → Hepatic vein                                       | First-pass detox; cirrhosis ↑ portal pressure, exercise must prevent Valsalva |
| Coronary       | LV → Coronary arteries → Cardiac<br>capillaries → Cardiac veins → Coronary<br>sinus → RA | Perfusion occurs in diastole; HR control crucial in CAD                       |

<sup>@</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.



www.ayurvedbharati.org



WHERE CLASSICAL WISDOM MEETS INTELLIGENT LEARNING

Circuit Route Why it Matters

Cerebral (Circle of Willis)

Carotid + Vertebral systems

Redundant flow; cervical mobilisation precautions for vertebral arteries

### 5 Haemodynamics in a Nutshell

- Flow (Q) = ΔP / R (Ohm's law) arterioles alter R via vasomotion.
- Compliance (C) = ΔV / ΔP veins ≫ arteries; prolonged standing pools blood → fainting; ankle pumps restore venous return.
- Poiseuille's law: radius⁴ effect → small change in arteriole diameter dramatically alters flow; warms-ups leverage this.
- Muscle pump + respiratory pump augment venous return—basis for active recovery and diaphragmatic breathing cues.

#### 6 Structure-Function-Clinical Correlation

| Scenario                             | <b>Anatomical Basis</b>                          | Physiotherapy Strategy                                                                   |
|--------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|
| Varicose veins                       | Valve incompetence, vein wall dilation           | Graduated compression, calf strengthening, avoid prolonged static standing               |
| Deep Vein Thrombosis (DVT)           | Slow flow in deep veins, hyper-<br>coagulability | Early ambulation post-surgery, ankle pumps, educate on red flags (Homan sign unreliable) |
| Orthostatic hypotension post-bedrest | ↓ Venous tone & plasma volume                    | Tilt-table progression, hydration, compression garments                                  |
| Peripheral Arterial Disease<br>(PAD) | Atherosclerotic narrowing of muscular arteries   | Graded walking to near-claudication pain (collateral recruitment), foot-skin checks      |
| Edema post-mastectomy                | Lymphatic + venous overload in arm               | Manual lymph drainage, kinesiotape, UE elevation during exercises                        |

## 7 Self-Check Quiz (answers below)

- 1. Which vessel type constitutes the major resistance component of systemic circulation and why?
- 2. State two structural differences between a muscular artery and a medium-sized vein.
- Trace a drop of blood from the left ventricle to the right atrium, passing through the hepatic portal system.
- 4. What physiologic mechanisms assist venous return during rhythmic diaphragmatic breathing?
- 5. Why is systolic pressure lower in the pulmonary artery than in the aorta?

## **Answers**

- 1. **Arterioles**—their narrow lumen and circular smooth-muscle coat allow large, rapid changes in radius, and resistance is inversely proportional to radius<sup>4</sup>.
- 2. Artery has **thicker tunica media** with more smooth muscle & elastic laminae; vein has **larger lumen, valves, and thicker tunica externa**.
- 3. LV → Aorta → Celiac/SMA/IMA branches → Capillaries of GI tract → **Hepatic portal vein** → Liver sinusoids → Hepatic veins → IVC → RA.
- 4. Descent of diaphragm ↓ thoracic pressure & ↑ abdominal pressure, creating a gradient that **sucks blood into thorax**; simultaneously diaphragm movement massages IVC.
- 5. Pulmonary circuit is short and vessels are highly compliant; RV wall generates only ~25 mm Hg to protect delicate alveolar capillaries from high pressure.

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.



## 8 Suggested Practical / Lab Activities

**Activity** Focus

Elastic vs Muscular Artery Histology Identify internal/external elastic laminae; discuss compliance

**Slides** implications

Segmental BP & Doppler Workshop Detect PAD, calculate ankle-brachial index

**Venous-Return Challenge**Measure HR/BP lying → standing with and without ankle pumps or

diaphragmatic breathing

Portal Circulation Flow Map

Build a physical string model on torso to visualise portal vs systemic

routes

#### 9 Key Take-Home Points

- Arteries distribute, arterioles regulate, capillaries exchange, veins return—each segment's wall
  composition matches its role.
- **Pulmonary vs systemic circuits** differ chiefly in pressure and oxygenation, but are in series; any left-heart failure backs into pulmonary circulation first.
- Physiotherapists manipulate body position, muscle activity, external compression, and breathing to
  optimise vascular return and tissue perfusion.
- Understanding vessel structure illuminates precautions for modalities like cryotherapy (vasoconstriction) and heat (vasodilation).

## Part 3 | Common Cardiovascular Disorders

#### 1 Learning Objectives

By the end of this part you should be able to ...

- 1. **Define and classify major cardiovascular disorders** that a physiotherapist commonly encounters: essential hypertension, ischaemic heart disease, heart failure, valvular disease, peripheral arterial disease, venous and lymphatic disorders.
- 2. Explain the underlying pathophysiology, risk factors, hallmark signs & symptoms, and typical investigations for each disorder.
- Summarise evidence-based physiotherapy goals and precautions across acute, sub-acute, and chronic phases.
- 4. **Screen for red-flag presentations** that mandate immediate medical referral.

# 2 Essential (Primary) Hypertension

| Item            | Key Points                                                                                                     | PT Implications                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Definition      | Resting BP $\geq$ 130/80 mm Hg (per ACC/AHA) on $\geq$ 2 separate occasions                                    | Baseline vitals at every initial visit                   |
| Pathophysiology | $\uparrow$ Systemic vascular resistance (SNS over-activity, RAAS upregulation) $\pm$ $\uparrow$ cardiac output | Aerobic conditioning ↓ SVR via endothelial NO            |
| Risk Factors    | Age > 50, obesity, sedentary lifestyle, high Na <sup>+</sup> diet, alcohol excess, stress, genetics            | Lifestyle counselling integral part of PT                |
| Clinical Signs  | Often asymptomatic; headaches, exertional SOB, retinal changes                                                 | Monitor for exaggerated pressor response during exercise |
| Complications   | LV hypertrophy, stroke, CKD, retinopathy                                                                       | Use RPE rather than target HR early in programme         |

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.



Item Key Points PT Implications

Moderate-intensity continuous or interval training ≥ 30 min **Physiotherapy Focus** most days (target 50-70 % VO₂max); resisted exercise at 40-60 % 1RM with breath control; relaxation & breathing techniques

# 3 Ischaemic Heart Disease (IHD)

| Aspect          | Stable Angina                                                                 | (ACS)                                                             | PT Take-aways                                          |
|-----------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|
| Cause           | Fixed atherosclerotic narrowing                                               | Plaque rupture $\rightarrow$ thrombus, $\downarrow$ coronary flow | Recognise chest pain pattern & risk stratify           |
| Classic Symptom | Predictable chest pressure with exertion, relieved by rest or GTN             | Unremitting pain, radiates to jaw/arm, diaphoresis, nausea        | Stop exercise immediately; activate emergency protocol |
| Investigations  | ECG ± stress test, coronary CT                                                | 12-lead ECG, troponin, angiography                                | PT post-MI starts ≤ 48-72 h if haemodynamically stable |
| Rehab Phases    | Phase I (in-patient), Phase II<br>(supervised OP), Phase III<br>(maintenance) | Monitor HR, BP, RPE; terminate if ≥ 2 mm ST-depression            | •                                                      |

# 4 Heart Failure (HF)

| Classification           | Pathophysiology                                    | Common Signs                           | PT Guidelines                                                              |
|--------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------|
| <b>HFrEF</b> (EF < 40 %) | Systolic pump failure (MI, dilated cardiomyopathy) | Dyspnoea, peripheral oedema, S₃ gallop | Interval walking / cycling 40-60 % HR reserve; seated exercise if NYHA III |
| <b>HFpEF</b> (EF ≥ 50 %) | Diastolic stiffness (HTN, ageing)                  | Exertional dyspnoea, rapid BP rise     | Longer warm-ups, cautious load progression                                 |
| Acute decomp             | Pulm. oedema, raised JVP                           | Pink frothy sputum                     | CONTRA-INDICATION to exercise; refer immediately                           |

# **5 Valvular Heart Disease**

| Valve Lesion         | Murmur                  | Functional Effect              | PT Note                                                            |
|----------------------|-------------------------|--------------------------------|--------------------------------------------------------------------|
| Aortic Stenosis      | Systolic ejection (RSB) | Fixed CO → syncope on exertion | Avoid sudden position changes; monitor for dizziness               |
| Mitral Regurgitation | Pansystolic (apex)      | Volume overload → LA dilation  | Aerobic exercise beneficial; avoid heavy resistance if symptomatic |

# 6 Peripheral Arterial Disease (PAD)

| Key Facts                                                                | PT Management                                                                                                          |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Athero-occlusive disease mainly of femoral-popliteal and tibial arteries | <b>Supervised walking</b> to near-max claudication pain (30-50 min, $3-5 \text{ d-wk}^{-1}$ ) improves collateral flow |
| Ankle-Brachial Index < 0.9 diagnostic; ≤ 0.3 critical                    | Foot-care education; avoid heat packs over insensate skin                                                              |

# 7 Venous & Lymphatic Disorders

| Condition                    | Mechanism                                             | PT Intervention                                                  |
|------------------------------|-------------------------------------------------------|------------------------------------------------------------------|
| Chronic Venous Insufficiency | Valve failure & calf-pump<br>weakness → oedema, ulcer | Graduated compression 20-40 mm Hg, calf strengthening, ankle ROM |

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.



| Condition                                      | Mechanism                      | PT Intervention                                                                                         |
|------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|
| Deep Vein Thrombosis (DVT)                     |                                | Early ambulation; if diagnosed—follow anticoag. guidelines (avoid vigorous manual techniques over limb) |
| Secondary Lympho-edema (e.g., post-mastectomy) | Lymph-node removal / radiation | Manual lymph drainage, pneumatic compression, skin care, graded resistance without exacerbation         |

# 8 Integrated Red-Flag Screen for Physiotherapists

| Symptom                                             | <b>Possible Cause</b> | Action                                                     |
|-----------------------------------------------------|-----------------------|------------------------------------------------------------|
| Chest pain > 20 min not relieved by rest            | ACS                   | Activate emergency response (chewable aspirin if protocol) |
| New-onset palpitations + dizziness                  | Arrhythmia            | Stop exercise, record pulse, refer                         |
| Rapid weight gain $> 2$ kg in 24 h + ankle swelling | HF exacerbation       | Refer GP/cardiologist promptly                             |
| Calf pain, warmth, swelling, + Homans sign          | DVT (low sensitivity  | ) Urgent medical imaging                                   |

#### 9 Self-Check Quiz (with Answers)

1. List four modifiable risk factors for essential hypertension.

**Answer:** Obesity, high dietary sodium, sedentary lifestyle, excessive alcohol intake (others: stress, smoking, poor sleep).

2. During an exercise test a patient develops chest pressure at 5 METs that resolves with rest. What is the likely diagnosis and next PT action?

**Answer:** Likely **stable angina**; stop test, document workload threshold, refer for medical optimisation before resuming training.

3. Give two reasons why ankle-brachial index may be falsely elevated in diabetics.

**Answer:** Medial arterial calcification stiffens arteries; ABI overestimates flow. Toe-brachial index or Doppler waveform is preferred.

4. Which heart sound indicates early diastolic filling and may signify heart failure in adults? Answer: S<sub>3</sub> (ventricular gallop).

5. Why are isometric holds at > 70 % MVC contraindicated in severe aortic stenosis?

**Answer:** They markedly ↑ after-load while a fixed valve limits cardiac output, precipitating syncope or arrhythmia.

## 10 Key Take-Home Messages

- Cardiovascular disorders range from silent hypertension to life-threatening ACS and HF—physios must screen, monitor, and adapt interventions.
- Exercise is medicine for most stable conditions; intensity, mode, and monitoring must align with pathology-specific guidelines.
- Recognise and act on **red-flag signs** rapidly; timely referral saves lives.
- Integrated lifestyle advice (weight, diet, stress, smoking cessation) is a core physiotherapy competency in cardiovascular health.

<sup>©</sup> Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.