

Unit 3: Anatomy of the Digestive and Excretory Systems

Subject: Human Anatomy

Unit 3: Anatomy of the Digestive and Excretory Systems

(Digestive Tract & Accessory Organs • Abdominal Cavity & Divisions • Liver, Pancreas, Gallbladder • Excretory/Urinary System • Applied Anatomy)

Video Lectures (YouTube):

3.1 Digestive System - Overview

The digestive system converts food into absorbable molecules and eliminates waste. It comprises:

- Alimentary canal (Gl tract): mouth → pharynx → esophagus → stomach → small intestine (duodenum, jejunum, ileum) → large intestine (cecum, colon, rectum) → anal canal.
- Accessory organs: salivary glands, liver, gallbladder, pancreas.

3.1.1 Wall of the GI tract (esophagus to anal canal)

Layer (inner → outer)	Key components	Function
Mucosa	epithelium (type varies), lamina propria, muscularis mucosae	secretion, absorption, protection
Submucosa	vessels, glands, Meissner (submucosal) plexus	supports mucosa; controls secretions
Muscularis externa	inner circular + outer longitudinal; Auerbach (myenteric) plexus	peristalsis/segmentation
Serosa/Adventitia	visceral peritoneum or fibrous CT	reduces friction or anchors

Epithelial changes: stratified squamous (esophagus) → simple columnar (stomach, intestines) → stratified squamous (anal canal).

3.2 Structure of Organs of the Digestive System

3.2.1 Mouth & Salivary Glands

- Teeth & tongue (mastication, bolus formation; taste).
- Major salivary glands: parotid (serous; Stensen duct), submandibular (mixed; Wharton duct), sublingual (mucous).
- **Saliva:** amylase, lipase (minor), mucus, IgA → lubrication, starch start.

3.2.2 Pharynx & Esophagus

- Muscular tube; upper & lower esophageal sphincters.
- **Esophagus**: stratified squamous epithelium; transitions to gastric mucosa at Z-line.
- **Applied:** GERD, hiatal hernia; aspiration risk if coordination is poor.

3.2.3 Stomach

• Regions: cardia, fundus, body, pylorus.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

- Rugae (folds), gastric pits with parietal cells (HCl, intrinsic factor), chief cells (pepsinogen), mucous neck cells, G cells (gastrin).
- **Function:** mixing → **chyme**; protein digestion begins.

3.2.4 Small Intestine

- Duodenum (C-shaped, retroperitoneal): receives bile & pancreatic juice via major duodenal papilla; Brunner glands (alkaline mucus).
- **Jejunum:** tall **plicae circulares**, many villi → absorption.
- Ileum: Peyer patches (lymphoid).
- Enterocytes with microvilli (brush border) host enzymes; goblet cells add mucus.

3.2.5 Large Intestine

- Cecum with appendix (lymphoid), colon (ascending, transverse, descending, sigmoid), rectum.
- Features: teniae coli, haustra, omental appendices; absorbs water/electrolytes; houses microbiota.

3.2.6 Anal Canal

- Upper part: visceral innervation; internal sphincter (smooth).
- Lower part: somatic innervation (inferior rectal nerve); external sphincter (skeletal).
- Pectinate line divides vascular/nerve supply & hemorrhoid types (internal vs external).

3.3 Abdominal Cavity - Peritoneum & Divisions

3.3.1 Peritoneum & Mesenteries

- Parietal vs visceral peritoneum; peritoneal cavity contains a thin film (potential space).
- Mesenteries (e.g., mesentery proper, transverse mesocolon) suspend viscera; pathways for vessels/nerves.
- Omenta: greater (fat-laden apron; immune role) & lesser (stomach ↔ liver).

3.3.2 Abdominal Regions (for localization)

- Four quadrants: RUQ, LUQ, RLQ, LLQ.
- Nine regions: right/left hypochondriac, epigastric; right/left lumbar, umbilical; right/left iliac (inguinal), hypogastric (pubic).

Organ highlights (typical)

RUQ: liver (right lobe), gallbladder, duodenum, head of pancreas

LUQ: stomach, spleen, left lobe liver, body/tail pancreas

RLQ: cecum, appendix, right ovary/ureter

LLQ: sigmoid colon, left ovary/ureter

3.3.3 Foregut-Midgut-Hindgut (arterial supply)

- Foregut: esophagus (abdominal), stomach, proximal duodenum, liver, GB, pancreas, spleen (embryologically) →
 Celiac trunk.
- Midgut: distal duodenum → 2/3 transverse colon → SMA.
- Hindgut: distal 1/3 transverse colon → rectum (above pectinate) → IMA.

3.4 Liver - Structure & Functions

© Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

3.4.1 Gross anatomy

- Largest gland; right & left lobes (plus quadrate, caudate).
- Porta hepatis: entry of portal vein (nutrient-rich), hepatic artery proper (oxygenated), exit of hepatic ducts.
- Peritoneal reflections: falciform ligament; lesser omentum (hepatoduodenal ligament contains portal triad).

3.4.2 Microanatomy (lobule concept)

- Hepatocytes in plates → sinusoids (fenestrated) with Kupffer cells (macrophages) → central vein.
- Bile canaliculi → bile ducts (in portal triads with hepatic artery & portal venule).

3.4.3 Functions (exam list)

• **Bile** production; **carb/lipid/protein** metabolism; **detox** (cytochrome P450); **storage** (glycogen, vitamins A/D/B12, iron); **plasma proteins** (albumin, clotting factors); **immune** filtering.

Applied: jaundice (pre-/intra-/post-hepatic causes), portal hypertension (ascites, varices), fatty liver.

3.5 Gallbladder - Storage & Concentration of Bile

- Parts: fundus, body, neck (with Hartmann pouch); cystic duct (spiral fold) joins common hepatic duct → common bile duct (CBD).
- CCK triggers contraction when fat enters duodenum.
- Calot's triangle (cystic duct, common hepatic duct, cystic artery) is key in cholecystectomy.

Applied: cholelithiasis (stones) → biliary colic; referred pain to right shoulder (phrenic irritation via diaphragm).

3.6 Pancreas - Dual Gland

- Retroperitoneal; head (with uncinate), neck, body, tail (tail to splenic hilum).
- Exocrine acini: digestive enzymes (trypsinogen, lipase, amylase) into main pancreatic duct (Wirsung) ±
 accessory (Santorini); often unite with CBD at hepatopancreatic ampulla (of Vater) guarded by sphincter
 of Oddi.
- Endocrine islets: β-cells (insulin), α (glucagon), δ (somatostatin), PP cells.

Applied: pancreatitis (epigastric pain radiating to back), malabsorption if duct blocked.

3.7 Excretory System - Overview

The excretory/urinary system maintains **fluid-electrolyte balance**, removes **nitrogenous wastes**, and supports **blood pressure & RBC production**.

Organs: kidneys, ureters, urinary bladder, urethra.

3.7.1 Kidneys - Gross & Micro

- **Retroperitoneal**; right kidney slightly lower.
- Hilum → sinus: renal artery, vein, pelvis (anterior → posterior usually: vein, artery, pelvis).
- Cortex; medulla with pyramids → papillae → minor calyces → major calyces → renal pelvis.

Nephron

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Key features Main functions Segment Renal corpuscle Fenestrated capillaries + filtration (glomerulus + Bowman Filtration of plasma → filtrate membrane capsule) Reabsorbs ~65% water/Na+; glucose/AA nearly **PCT** Brush border Descending thin; ascending thick **Loop of Henle** Counter-current system; concentrates/dilutes DCT Macula densa near afferent arteriole Na+ fine-tuning (aldosterone) Collecting duct Principal/intercalated cells Water reabsorption (ADH); acid-base balance

Juxtaglomerular apparatus (JGA): macula densa + JG cells → renin (RAAS) for BP control. Endocrine roles: EPO (RBCs), renin, activation of vitamin D (calcitriol).

3.7.2 Ureters

- Muscular tubes (peristalsis) from renal pelvis to bladder.
- Three natural narrowings (stone sites): pelvi-ureteric junction (PUJ), crossing pelvic brim, ureterovesical junction (UVJ).

3.7.3 Urinary Bladder

- **Detrusor** (smooth muscle) with **rugae**; **trigone** smooth (ureteric orifices & internal urethral orifice).
- **Innervation:** parasympathetic (pelvic splanchnic) contracts detrusor/relaxes internal sphincter; sympathetic does the opposite; somatic **pudendal** controls external sphincter.
- **Micturition reflex**: stretch → parasympathetic activation.

3.7.4 Urethra

- Male: prostatic → membranous → spongy; longer; dual urinary/ reproductive roles.
- Female: short; higher UTI risk; separate from reproductive tract.

3.8 Applied Anatomy (Digestive & Urinary)

3.8.1 Digestive highlights

- Referred pain maps:
 - \circ **Gallbladder** \rightarrow right shoulder/scapula (diaphragmatic irritation).
 - Pancreas → mid-back.
 - Appendix → periumbilical → RLQ (McBurney point).
- Portal hypertension: porto-systemic anastomoses (esophageal varices, caput medusae, hemorrhoids).
- Fiber & hydration support colonic motility; straining risks hemorrhoids/hernia.

3.8.2 Urinary highlights

- Renal colic: pain along ureteral path at three constrictions; encourage hydration & gentle mobility (medical evaluation first).
- UTI education: void regularly, front-to-back hygiene, adequate fluids; avoid unnecessary retention.
- **Pelvic floor**: training improves continence; excessive straining can weaken support.
- Practice safety: avoid strong kumbhaka/bandha in uncontrolled HTN, renal/cardiac disease; favor gentle diaphragmatic breathing and restorative postures.

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

3.9 Quick Integration Charts

3.9.1 Digestive enzymes (where they act)

SiteKey secretionsTargetMouthAmylaseStarch → maltoseStomachPepsin, HClProteins (initial)Pancreas (into duodenum)Trypsin/Chymotrypsin, Lipase, AmylaseProteins, fats, carbs

Small intestine (brush border) **Disaccharidases**, **Peptidases** Final breakdown → absorption

3.9.2 Fluid handling (24h, approximate)

Ingested + secreted $\sim 8-9$ L \rightarrow Small intestine absorbs most \rightarrow Colon reclaims $\sim 1-2$ L \rightarrow Stool $\sim 100-200$ mL

Unit Summary

Food travels through a specialized tube whose wall (mucosa → serosa) is optimized for **secretion**, **absorption**, **and propulsion**. The **liver** (dual blood supply) produces bile and governs metabolism; the **gallbladder** stores/concentrates bile; the **pancreas** supplies enzymes and hormones. The **peritoneum**, **mesenteries**, **and abdominal regions** organize viscera and guide clinical localization. The **kidneys** filter blood via millions of nephrons, regulate volume/electrolytes, and secrete renin/EPO; **ureters** conduct urine by peristalsis; the **bladder and urethra** coordinate storage and voiding. Applied anatomy connects these structures to symptoms (referred pain, colic), procedures (pulses, quadrants), and safe practice choices in Yoga & Naturopathy.

Key Terms

- Mucosa/Submucosa/Auerbach-Meissner plexuses Peyer patches Plicae circulares
- Celiac/SMA/IMA Portal triad (hepatic artery, portal vein, bile duct) Kupffer cell
- Calot's triangle Ampulla of Vater, Sphincter of Oddi
- Nephron (PCT, Loop, DCT, Collecting duct) JGA (macula densa, renin)
- PUJ/UVJ Detrusor, Trigone RAAS, EPO, Calcitriol

Self-Assessment

MCQs

- 1. Type II pneumocytes in the alveoli secrete:
 - a) Pepsin b) Surfactant c) Bile d) Renin
- 2. The portal triad contains all except:
 - a) Hepatic artery b) Portal vein c) Common hepatic duct d) Hepatic vein
- 3. The main pancreatic duct usually joins the common bile duct to open into the:
 - a) Minor duodenal papilla b) Major duodenal papilla c) Pyloric canal d) Jejunal fold
- 4. Natural **ureteric constrictions** include all **except**:
 - a) Pelvi-ureteric junction b) Crossing pelvic brim c) Uretero-vesical junction d) Mid-ureteral valve
- 5. **Peyer patches** are prominent in the:
 - a) Duodenum b) Jejunum c) Ileum d) Sigmoid colon

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only. Unauthorized reproduction, distribution, or commercial use is strictly prohibited.

Answer key: 1-b, 2-d, 3-b, 4-d, 5-c

Short Answer

- 1. List the **four layers** of the GI tract and one function of each.
- 2. Outline the **dual blood supply** of the liver and two key functions of hepatocytes.
- 3. Name the **parts of the pancreas** and the ducts; state where they open.
- 4. Trace **urine flow** from collecting duct to urethra, naming all chambers.
- 5. State the **three ureteric constrictions** and their clinical importance.

Reflective/Application

- 1. A participant has **right upper quadrant pain** after a fatty meal and shoulder-tip discomfort. Which organ is likely involved? Explain the **referred pain pathway**.
- 2. During a relaxation class, someone reports **flank-to-groin colicky pain** and restlessness. What **anatomical pathway** and **structures** are implicated? What immediate non-pharmacological supports are reasonable while arranging medical care?

End of Unit 3: Anatomy of the Digestive and Excretory Systems

[©] Ayurvite Wellness Pvt Ltd. All rights reserved. This PDF is for personal use only Unauthorized reproduction, distribution, or commercial use is strictly prohibited.